The <em>estimated</em> displacement of the center of mass of the olive is
.
<h3>Procedure - Estimation of the displacement of the center of mass of the olive</h3>
In this question we should apply the definition of center of mass and difference between the coordinates for <em>dynamic</em> (
) and <em>static</em> conditions (
) to estimate the displacement of the center of mass of the olive (
):
(1)
Where:
- x-Coordinate of the i-th element of the system, in meters.
- y-Coordinate of the i-th element of the system, in meters.
- x-Component of the net force applied on the i-th element, in newtons.
- y-Component of the net force applied on the i-th element, in newtons.
- Mass of the i-th element, in kilograms.
- Gravitational acceleration, in meters per square second.
If we know that
,
,
,
,
,
and
, then the displacement of the center of mass of the olive is:
<h3>Dynamic condition
![\vec{r} = \left[\frac{(0)\cdot (0.50)\cdot (9.807)+(0)\cdot (0) + (1)\cdot (1.50)\cdot (9.807) + (1)\cdot (-3)}{(0.50)\cdot (9.807) + 0 + (1.50)\cdot (9.807)+(-3)}, \frac{(0)\cdot (0.50)\cdot (9.807) + (0)\cdot (3) + (2)\cdot (1.50)\cdot (9.807) +(2) \cdot (-2)}{(0.50)\cdot (9.807) + (3)+(1.50)\cdot (9.807)+(-2)} \right]](https://tex.z-dn.net/?f=%5Cvec%7Br%7D%20%3D%20%5Cleft%5B%5Cfrac%7B%280%29%5Ccdot%20%280.50%29%5Ccdot%20%289.807%29%2B%280%29%5Ccdot%20%280%29%20%2B%20%281%29%5Ccdot%20%281.50%29%5Ccdot%20%289.807%29%20%2B%20%281%29%5Ccdot%20%28-3%29%7D%7B%280.50%29%5Ccdot%20%289.807%29%20%2B%200%20%2B%20%281.50%29%5Ccdot%20%289.807%29%2B%28-3%29%7D%2C%20%5Cfrac%7B%280%29%5Ccdot%20%280.50%29%5Ccdot%20%289.807%29%20%2B%20%280%29%5Ccdot%20%283%29%20%2B%20%282%29%5Ccdot%20%281.50%29%5Ccdot%20%289.807%29%20%2B%282%29%20%5Ccdot%20%28-2%29%7D%7B%280.50%29%5Ccdot%20%289.807%29%20%2B%20%283%29%2B%281.50%29%5Ccdot%20%289.807%29%2B%28-2%29%7D%20%20%5Cright%5D)
![\vec r = (0,704, 1.233)\,[m]](https://tex.z-dn.net/?f=%5Cvec%20r%20%3D%20%280%2C704%2C%201.233%29%5C%2C%5Bm%5D)
</h3>
<h3>Static condition</h3><h3>
![\vec{r}_{o} = \left[\frac{(0)\cdot (0.50)\cdot (9.807) + (1)\cdot (1.50)\cdot (9.807)}{(0.50)\cdot (9.807) + (1.50)\cdot (9.807)}, \frac{(0)\cdot (0.50)\cdot (9.807) + (2)\cdot (1.50)\cdot (9.807)}{(0.50)\cdot (9.807)+(1.50)\cdot (9.807)} \right]](https://tex.z-dn.net/?f=%5Cvec%7Br%7D_%7Bo%7D%20%3D%20%5Cleft%5B%5Cfrac%7B%280%29%5Ccdot%20%280.50%29%5Ccdot%20%289.807%29%20%2B%20%281%29%5Ccdot%20%281.50%29%5Ccdot%20%289.807%29%7D%7B%280.50%29%5Ccdot%20%289.807%29%20%2B%20%281.50%29%5Ccdot%20%289.807%29%7D%2C%20%5Cfrac%7B%280%29%5Ccdot%20%280.50%29%5Ccdot%20%289.807%29%20%2B%20%282%29%5Ccdot%20%281.50%29%5Ccdot%20%289.807%29%7D%7B%280.50%29%5Ccdot%20%289.807%29%2B%281.50%29%5Ccdot%20%289.807%29%7D%20%20%5Cright%5D)
</h3><h3>
![\vec r_{o} = \left(0.75, 1.50)\,[m]](https://tex.z-dn.net/?f=%5Cvec%20r_%7Bo%7D%20%3D%20%5Cleft%280.75%2C%201.50%29%5C%2C%5Bm%5D)
</h3><h3 /><h3>Displacement of the center of mass of the olive</h3>

![\overrightarrow{\Delta r} = (0.704-0.75, 1.233-1.50)\,[m]](https://tex.z-dn.net/?f=%5Coverrightarrow%7B%5CDelta%20r%7D%20%3D%20%280.704-0.75%2C%201.233-1.50%29%5C%2C%5Bm%5D)
![\overrightarrow{\Delta r} = (-0.046, -0.267)\,[m]](https://tex.z-dn.net/?f=%5Coverrightarrow%7B%5CDelta%20r%7D%20%3D%20%28-0.046%2C%20-0.267%29%5C%2C%5Bm%5D)
The <em>estimated</em> displacement of the center of mass of the olive is
. 
To learn more on center of mass, we kindly invite to check this verified question: brainly.com/question/8662931
A. NaOH
B. PbNO3
C. FeSO4
D. P2O3
E. CSe2
F. HC2H3O2
G. HCIO
H. H2SO4
A measure of the quantity of matter is called mass. D.
This is how much of matter is contained in an object. It is different from weight, which is the pull of gravity on an object.
Answer:Work is the energy required to move an object from one point to another. while power is the energy transferred per unit time.