Many rare and/or endemic species exhibit one or more of the following attributes which make them especially prone to extinction: (1) narrow (and single) geographical range, (2) only one or a few populations, (3) small population size and little genetic variability, (4) over-exploitation by people
Answer : Amoxicillin Suspension 125 mg/ 5 ml is 125 mg of Amoxicillin per 5 ml of suspension is an example of weight to volume.
Explanation :
Weight by volume (w/v) means that the mass of solute present in 100 mL volume of solution.
Weight by weight (w/w) means that the mass of solute present in 100 gram of solution.
Volume by volume (v/v) means that the volume of solute present in 100 mL volume of solution.
As per question, amoxicillin suspension is, 125 mg/ 5 ml that means 125 mg of Amoxicillin present in 5 mL of suspension. So, it is an example of weight to volume.
Hence, it is an example of weight to volume.
No it does not effect the temperature of boiling point
Complete Question
The complete question is shown on the first uploaded image
Answer:
The equilibrium constant is 
Explanation:
From the question we are told that
The chemical reaction equation is

The voume of the misture is
The molar mass of
is a constant with value of 
The molar mass of
is a constant with value of 
The molar mass of
is a constant with value of 
Generally the number of moles is mathematically given as

For 


For 


For 


Generally the concentration of a compound is mathematicallyrepresented as

For 
![Concentration[Fe_2 O_3] = \frac{0.222125}{5.4}](https://tex.z-dn.net/?f=Concentration%5BFe_2%20O_3%5D%20%3D%20%5Cfrac%7B0.222125%7D%7B5.4%7D)
For 
![Concentration[H_2] = \frac{1.815}{5.4}](https://tex.z-dn.net/?f=Concentration%5BH_2%5D%20%3D%20%5Cfrac%7B1.815%7D%7B5.4%7D)

For 
![Concentration [H_2O] = \frac{0.12}{5.4}](https://tex.z-dn.net/?f=Concentration%20%5BH_2O%5D%20%3D%20%5Cfrac%7B0.12%7D%7B5.4%7D)

The equilibrium constant is mathematically represented as
![K_c = \frac{[concentration \ of \ product]}{[concentration \ of \ reactant ]}](https://tex.z-dn.net/?f=K_c%20%3D%20%5Cfrac%7B%5Bconcentration%20%5C%20of%20%5C%20product%5D%7D%7B%5Bconcentration%20%5C%20of%20%5C%20reactant%20%5D%7D)
Considering 
And 
At equilibrium the

