Answer:
1. Answer: The bowling ball has more potential energy as it sits on top of the building. It does not have any kinetic energy because it is not moving.
2. Answer: The bowling ball has equal amounts of potential and kinetic energy half way through the fall. At the half way point, half of the potential energy has been converted to kinetic energy.
3. Answer: Just before the ball hits the ground, it has more kinetic energy. As it hits the ground the potential energy becomes zero.
4. Answer:
PE=784 J
5. Answer:
PE = 392 J
6. Answer:
KE= 392 J
Also, since the PE and KE are equal at the half way point and PE =392 J, KE = 392 J.
7. What is the kinetic energy of the ball just before it hits the ground?
Answer:
KE=784 J
At first I answered in the comments, but I am able to answer now. I hope this can help
<h3>
Answer:</h3>
8.01 mol MgO
<h3>
General Formulas and Concepts:</h3>
<u>Math</u>
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Chemistry</u>
<u>Atomic Structure</u>
<u>Stoichiometry</u>
- Using Dimensional Analysis
- Analyzing Reactions RxN
<h3>
Explanation:</h3>
<u>Step 1: Define</u>
[RxN - Unbalanced] Mg + O₂ → MgO
[RxN - Balanced] 2Mg + O₂ → 2MgO
[Given] 8.01 moles Mg
[Solve] moles MgO
<u>Step 2: Identify Conversions</u>
[RxN] 2 mol Mg → 2 mol MgO
<u>Step 3: Stoich</u>
- [DA] Set up:

- [DA] Multiply/Divide [Cancel out units]:

Answer:
the speed of the wave is 96.6
Explanation:
to find do frequency x wavelength
KE = 1/2mass • velocity^2
So, if we take half of 55, we get 27.5
Next, we take 2, and square it, getting 4.
Lastly, take 27.5, and multiply it by 4, getting 110 Joules, hope this helps and have a great day!