Answer:
C. Y & Z
Explanation:
V, W are imaginary metals here because their valence electrons are typically less than 4. X, Y, Z are non-metals and have higher valence electrons. Here, if V or W bind with X, Y, or Z we make ionic bond (because metal + non metal = ionic). But, if X binds with Y or Z or any combinations of any two of the three non-metals results in covalent bond (non metal + non metal = covalent).
Thus, Y and Z make covalent.
Explanation:
In the molecular equation for a reaction, all of the reactants and products are represented as neutral molecules (even soluble ionic compounds and strong acids). In the complete ionic equation, soluble ionic compounds and strong acids are rewritten as dissociated ions.
The net ionic equation is a chemical equation for a reaction that lists only those species participating in the reaction. The net ionic equation is commonly used in acid-base neutralization reactions, double displacement reactions, and redox reactions.
A covalent bond is your answer
Answer:
The answer to your question is P2 = 2676.6 kPa
Explanation:
Data
Volume 1 = V1 = 12.8 L Volume 2 = V2 = 855 ml
Temperature 1 = T1 = -108°C Temperature 2 = 22°C
Pressure 1 = P1 = 100 kPa Pressure 2 = P2 = ?
Process
- To solve this problem use the Combined gas law.
P1V1/T1 = P2V2/T2
-Solve for P2
P2 = P1V1T2 / T1V2
- Convert temperature to °K
T1 = -108 + 273 = 165°K
T2 = 22 + 273 = 295°K
- Convert volume 2 to liters
1000 ml -------------------- 1 l
855 ml -------------------- x
x = (855 x 1) / 1000
x = 0.855 l
-Substitution
P2 = (12.8 x 100 x 295) / (165 x 0.855)
-Simplification
P2 = 377600 / 141.075
-Result
P2 = 2676.6 kPa
As the question tells you, you need to use the formula
% mass= mass of solute/ mass of solution x 100
mass solute= 30.0 g
mass of solution= 30.0 + 270.0= 300.0 g
% mass= 30.0/ 300.0 x 100= 10%
answer is B