Answer:
a) What is the surface temperature, in °C, after 400 s?
T (0,400 sec) = 800°C
b) Yes, the surface temperature is greater than the ignition temperature of oak (400°C) after 400 s
c) What is the temperature, in °C, 1 mm from the surface after 400 s?
T (1 mm, 400 sec) = 798.35°C
Explanation:
oak initial Temperature = 25°C = 298 K
oak exposed to gas of temp = 800°C = 1073 K
h = 20 W/m².K
From the book, Oak properties are e=545kg/m³ k=0.19w/m.k Cp=2385J/kg.k
Assume: Volume = 1 m³, and from energy balance the heat transfer is an unsteady state.
From energy balance: 
Initial temperature wall = 
Surface temperature = T
Gas exposed temperature = 
Answer:
The world's oldest dress called the Tarkhan Dress is at 5,100 to 5,500 years of age.
Does that help? Or do you need something else? I can change my answer if this is not what you need! :D
Explanation:
Answer:
View Image
Explanation:
Initialize your variable as a float or double since you're going to be using fractions in your answer.
User scanf() to get user input.
Print out the sum, product, quotient, and difference between the two numbers.
B I guess. since they both have potential to collapse
Answer:
σ = 391.2 MPa
Explanation:
The relation between true stress and true strain is given as:
σ = k εⁿ
where,
σ = true stress = 365 MPa
k = constant
ε = true strain = Change in Length/Original Length
ε = (61.8 - 54.8)/54.8 = 0.128
n = strain hardening exponent = 0.2
Therefore,
365 MPa = K (0.128)^0.2
K = 365 MPa/(0.128)^0.2
k = 550.62 MPa
Now, we have the following data:
σ = true stress = ?
k = constant = 550.62 MPa
ε = true strain = Change in Length/Original Length
ε = (64.7 - 54.8)/54.8 = 0.181
n = strain hardening exponent = 0.2
Therefore,
σ = (550.62 MPa)(0.181)^0.2
<u>σ = 391.2 MPa</u>