1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
goblinko [34]
3 years ago
6

Q9. A cylindrical specimen of a metal alloy 54.8 mm long and 10.8 mm in diameter is stressed in tension. A true stress of 365 MP

a causes the specimen to plastically elongate to a length of 61.8 mm. If it is known that the strain-hardening exponent for this alloy is 0.2, calculate the true stress (in MPa) necessary to plastically elongate a specimen of this same material from a length of 54.8 mm to a length of 64.7 mm. (10 points)
Engineering
1 answer:
wolverine [178]3 years ago
7 0

Answer:

σ = 391.2 MPa

Explanation:

The relation between true stress and true strain is given as:

σ = k εⁿ

where,

σ = true stress = 365 MPa

k = constant

ε = true strain = Change in Length/Original Length

ε = (61.8 - 54.8)/54.8 = 0.128

n = strain hardening exponent = 0.2

Therefore,

365 MPa = K (0.128)^0.2

K = 365 MPa/(0.128)^0.2

k = 550.62 MPa

Now, we have the following data:

σ = true stress = ?

k = constant = 550.62 MPa

ε = true strain = Change in Length/Original Length

ε = (64.7 - 54.8)/54.8 = 0.181

n = strain hardening exponent = 0.2

Therefore,

σ = (550.62 MPa)(0.181)^0.2

<u>σ = 391.2 MPa</u>

You might be interested in
A genetically engineered hormone.
I am Lyosha [343]
What is the question?
3 0
3 years ago
Consider a 2-shell-passes and 8-tube-passes shell-and-tube heat exchanger. What is the primary reason for using many tube passes
Maru [420]

Answer:

See explanation

Explanation:

Solution:-

- The shell and tube heat exchanger are designated by the order of tube and shell passes.

- A single tube pass: The fluid enters from inlet, exchange of heat, the fluid exits.

- A multiple tube pass: The fluid enters from inlet, exchange of heat, U bend of the fluid, exchange of heat, .... ( nth order of pass ), and then exits.

- By increasing the number of passes we have increased the "retention time" of a specific volume of tube fluid; hence, providing sufficient time for the fluid to exchange heat with the shell fluid.

- By making more U-turns we are allowing greater length for the fluid flow to develop with " constriction and turns " into turbulence. This turbulence usually at the final passes allows mixing of fluid and increases the heat transfer coefficient by:

                                U ∝ v^( 0.8 )    .... ( turbulence )

- The higher the velocity of the fluids the greater the heat transfer coefficient. The increase in the heat transfer coefficient will allow less heat energy carried by either of the fluids to be wasted ; hence, reduced losses.

Thereby, increases the thermal efficiency of the heat exchanger ( higher NTU units ).

5 0
3 years ago
All the fnaf UNC charecters
astra-53 [7]

Answer:

T.Freddy.

T.Bonnie.

T.Chica.

G.Freddy.

N. Freddy.

F.Foxy.

Mr.Hippo.

R.Freddy.

Explanation:

8 0
3 years ago
Read 2 more answers
An LED camping headlamp can run for 18 hours, powered by three AAA batteries. The batteries each have a capacity of 1000 mAh, an
KIM [24]

Answer:

a) the power consumption of the LEDs is 0.25 watt

b) the LEDs drew 0.0555 Amp current

Explanation:

Given the data in the question;

Three AAA Batteries;

<---- 1000mAh [ + -] 1.5 v ------1000mAh [ + -] 1.5 v --------1000mAh [ + -] 1.5 v------

so V_total = 3 × 1.5 = 4.5V

a) the power consumption of the LEDs

I_battery = 1000 mAh / 18hrs    { for 18 hrs}

I_battery = 1/18 Amp    { delivery by battery}

so consumption by led = I × V_total

we substitute

⇒ 1/18 × 4.5

P = 0.25 watt

Therefore the power consumption of the LEDs is 0.25 watt

b) How much current do the LEDs draw

I_Draw = I_battery = 1/18 Amp = 0.0555 Amp

Therefore the LEDs drew 0.0555 Amp current

5 0
3 years ago
How does a 2.5 MW wind turbine costing $ 4 million compare to a 5-kw wind turbine $3 /W? a) Same $/w b) Smaller $/w c) Larger $/
My name is Ann [436]
MW means megawatt, and one megawatt is a million Watts.
The 2.5 MW turbine is 4/2.5=1.6 $/w
Answer B
4 0
3 years ago
Other questions:
  • Polymer ropes and lines for use on water are often designed to float, to aid in their retrieval and to avoid applying a downward
    6·1 answer
  • A 860 kΩ resistor has 34 μA of current. What is the supply voltage for this electric circuit?
    13·2 answers
  • A bus travels the 100 miles between A and B at 50 mi/h and then another 100 miles between B and C at 70 mi/h.
    6·1 answer
  • 3. Technician A says passive permanent
    5·1 answer
  • Consider atmospheric air at 20°C and a velocity of 30 m/s flowing over both surfaces of a 1-m-long flat plate that is maintained
    11·1 answer
  • The bulk density of a compacted soil specimen (Gs = 2.70) and its water content are 2060 kg/m^3 and 15.3%, respectively. If the
    5·1 answer
  • In a movie theater in winter, 510 people, each generation sensible heat at a rate of 80 W, are watching a movie. The heat losses
    11·1 answer
  • 50 points
    7·1 answer
  • Question 8 (1 point)
    5·1 answer
  • What is chemical engieering ?​
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!