1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Taya2010 [7]
3 years ago
6

A woman carries a 10kg box up a set of 5m high stairs and then down a 12m long hallway. How much work does she do on the box?

Physics
1 answer:
nika2105 [10]3 years ago
7 0

Answer: 1666J

Explanation:

Given that,

Mass of box (m) = 10kg

Total distance covered by box (h)

= (5m + 12m)

= 17m

work done on the box = ?

Work is done when force is applied on an object over a distance. Hence, the magnitude of work done on the box depends on its mass (m), distance covered (h), and acceleration due to gravity (g)

(g has a value of 9.8m/s²

i.e Work = mgh

Work = 10kg x 9.8m/s² x 17m

Work = 1666J

Thus, 1666 joules of work was done by the woman on the box.

You might be interested in
Pls do question 1 part d). tysm
Aneli [31]

Answer:

c

Explanation:

cuz its informing the length of 5 and weight on 20N

5 0
3 years ago
Your cousin Jannik skis down a blue square ski slope, with an initial speed of 3.6 m/s. He travels 15 m down the mountain side b
fenix001 [56]

Answer: The loss of energy due to friction is equal to 1,253 J.

Explanation:

The problem tells us that the skier has an initial speed of 3.6 m/s, which means that his initial kinetic energy is as follows:

K₁ = 1/2 m v₁² = 1/2 . 58.0 Kg. (3.6)² (m/s)² =  376 J

After coming to a  flat landing, his final speed is 7.8 m/s, so the final kinetic energy is as follows:

K₂ = 1/2 m v₂² = 1/2. 58.0 Kg. (7.8)² (m/s)² = 1,764 J

Now, when skying down the slope the increase in kinetic energy only can come from another type of energy, in this case, gravitational potential energy.

If we take the ground flat level as a Zero reference, the initial gravitational potential energy, can be written as follows, by definition:

U₁ = m.g. h (1)

Now, we don't know the value of the height h, but we know that the incline has a 18º angle above the horizontal, and that the distance travelled along the incline is 15 m.

By definition, the sinus of an angle, is equal to the proportion between the height and the hypotenuse , so we can write the following equation:

sin 18º = h / 15 m ⇒ h = 15 m. sin 18º = 4.6 m

Replacing in (1), we get:

U₁ = 58.0 Kg. 9.8 m/s². 4.6 m = 2,641 J

So, we can get the total initial mechanical energy, as follows:

E₁ = K₁ + U₁ = 376 J + 2,641 J = 3,017 J

After arriving to the flat zone, all potential energy has become in kinetic energy, even though not completely, due to the effect of friction.

This remaining kinetic energy can be written as follows:

E₂ = K₂ = 1,764 J

The difference E₂-E₁, is the loss of energy due to friction forces acting during the travel along the 15 m path, and is as follows:

ΔE= E₂ - E₁ = 1,764 J - 3,017 J = -1,253 J

8 0
3 years ago
Racing greyhounds are capable of rounding corners at very high speeds. A typical greyhound track has turns that are 45 m diamete
Readme [11.4K]

Answer:

In m/s^2:

a=11.3778 m/s^2

In units of g:

a=1.161 g

Explanation:

Since the racing greyhounds are capable of rounding corners at very high speed so we are going use the following formula of acceleration for circular paths.

a=\frac{v^2}{r}

where:

v is the speed

r is the radius

Now,

a=\frac{16^2}{45/2}\\ a=11.3778 m/s^2

In g units:

a=\frac{11.3778\ g}{9.8}\\ a=1.161\ g

7 0
3 years ago
consider a solid sphere and a solid disk wiht the same radius and the same mass. explain why the solid disk has a greater moment
andriy [413]

Answer:

Moment of inertia of the solid sphere:

I

s

=

2

5

M

R

2

.

.

.

.

.

.

.

.

.

.

.

(

1

)

Is=25MR2...........(1)

Here, the mass of the sphere is

M

M

4 0
3 years ago
The force of Earth's gravity on a capsule in space will lessen as it moves farther away. If the capsule moves to twice its dista
Bess [88]

Answer: One quarter of the force

Explanation:

According to Newton's law of Gravitation, the force F exerted between two bodies of masses m1 and m2  and separated by a distance r  is equal to the product of their masses and inversely proportional to the square of the distance:

F=G\frac{(m1)(m2)}{r^2}    (1)

Where Gis the gravitational constant

This means that the gravity force decreases when the distance between these two bodies increases.

In this context, if the distance between the capsule and the Earth increases twice, the new distance will be 2r.

Substituting this distance in (1):

F=G\frac{(m1)(m2)}{(2r)^2}    (2)

F=G\frac{(m1)(m2)}{4r^2}    

<u>Finally:</u>

F=\frac{1}{4}G\frac{(m1)(m2)}{r^2} >>>This means the force toward Earth becomes one quarter "weaker"

3 0
3 years ago
Other questions:
  • The electric field that is 0.25m from a small sphere is 450n/c toward the sphere.
    10·2 answers
  • Willing to give a brainliest!
    6·2 answers
  • An object is accelerating if there is a change in speed and/ or which factor A.Time B.Position C.Direction D.Displacment
    5·2 answers
  • Students are given some resistors with various resistances a battery with internal resistance
    5·2 answers
  • a fan acquires a speed of 180 rpm in 4s, starting from rest. calculate the speed of the fan at the end of the 5th second startin
    7·1 answer
  • Verify that for values of n less than 8, the system goes to a stable equilibrium, but as n passes 8, the equilibrium point becom
    5·1 answer
  • For a freely falling object dropped from rest, what is the acceleration at the
    7·1 answer
  • Which of the following displays has the highest hz frequency
    7·1 answer
  • Draw the well labelled diagram of thermo flask.​
    10·1 answer
  • State Newton's second law of motion in terms of momentum<br>​
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!