Answer:
<em> The heat diffusion equation for a 1-D cylindrical, radial coordinate system with internal heat generation is given as</em>
<em> </em>
<em></em>
<em>This equation is comparable to equation 2.26 when φ and z terms are considered 0.</em>
Explanation:
As per the given statement, <em>heat diffusion equation for a one-dimensional, cylindrical, radial coordinate system with internal heat generation </em>is given as the condition.
Let us consider a control volume of unit thickness with volume as given below perpendicular to the paper.

As per the conservation of energy

Now using the Fourier's law in 1-D coordinate system

Similarly
![q_{r+dr}=q_r+\frac{\partial}{\partial r}(q_r) dr\\q_{r+dr}=-2 \pi k r\frac{\partial T}{\partial r}+\frac{\partial}{\partial r}[-2 \pi k r\frac{\partial T}{\partial r}]dr](https://tex.z-dn.net/?f=q_%7Br%2Bdr%7D%3Dq_r%2B%5Cfrac%7B%5Cpartial%7D%7B%5Cpartial%20r%7D%28q_r%29%20dr%5C%5Cq_%7Br%2Bdr%7D%3D-2%20%5Cpi%20k%20r%5Cfrac%7B%5Cpartial%20T%7D%7B%5Cpartial%20r%7D%2B%5Cfrac%7B%5Cpartial%7D%7B%5Cpartial%20r%7D%5B-2%20%5Cpi%20k%20r%5Cfrac%7B%5Cpartial%20T%7D%7B%5Cpartial%20r%7D%5Ddr)
Substituting these values in the energy balance equation gives
![\dot{E_{in}}-\dot{E_{out}}+\dot{E_{gen}}=\dot{E_{st}}\\q_r-q_{r+dr}+\dot{q}.V=\rho V c_p\frac{\partial T}{\partial t}\\-2 \pi k r\frac{\partial T}{\partial r}-[-2 \pi k r\frac{\partial T}{\partial r}+\frac{\partial}{\partial r}[-2 \pi k r\frac{\partial T}{\partial r}]dr]+\dot{q} (2 \pi r dr)=\rho 2 \pi rdr c_p\frac{\partial T}{\partial t}\\-[\frac{\partial}{\partial r}[-2 \pi k r\frac{\partial T}{\partial r}]dr]+\dot{q} (2 \pi r dr)=\rho 2 \pi rdr c_p\frac{\partial T}{\partial t}\\](https://tex.z-dn.net/?f=%5Cdot%7BE_%7Bin%7D%7D-%5Cdot%7BE_%7Bout%7D%7D%2B%5Cdot%7BE_%7Bgen%7D%7D%3D%5Cdot%7BE_%7Bst%7D%7D%5C%5Cq_r-q_%7Br%2Bdr%7D%2B%5Cdot%7Bq%7D.V%3D%5Crho%20V%20c_p%5Cfrac%7B%5Cpartial%20T%7D%7B%5Cpartial%20t%7D%5C%5C-2%20%5Cpi%20k%20r%5Cfrac%7B%5Cpartial%20T%7D%7B%5Cpartial%20r%7D-%5B-2%20%5Cpi%20k%20r%5Cfrac%7B%5Cpartial%20T%7D%7B%5Cpartial%20r%7D%2B%5Cfrac%7B%5Cpartial%7D%7B%5Cpartial%20r%7D%5B-2%20%5Cpi%20k%20r%5Cfrac%7B%5Cpartial%20T%7D%7B%5Cpartial%20r%7D%5Ddr%5D%2B%5Cdot%7Bq%7D%20%282%20%5Cpi%20r%20dr%29%3D%5Crho%202%20%5Cpi%20rdr%20c_p%5Cfrac%7B%5Cpartial%20T%7D%7B%5Cpartial%20t%7D%5C%5C-%5B%5Cfrac%7B%5Cpartial%7D%7B%5Cpartial%20r%7D%5B-2%20%5Cpi%20k%20r%5Cfrac%7B%5Cpartial%20T%7D%7B%5Cpartial%20r%7D%5Ddr%5D%2B%5Cdot%7Bq%7D%20%282%20%5Cpi%20r%20dr%29%3D%5Crho%202%20%5Cpi%20rdr%20c_p%5Cfrac%7B%5Cpartial%20T%7D%7B%5Cpartial%20t%7D%5C%5C)
Dividing both sides with 2πr dr
![\frac{1}{\partial r}\frac{\partial}{\partial r}[-k\frac{\partial T}{\partial r}]+\dot{q} =\rho c_p\frac{\partial T}{\partial t}\\](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B%5Cpartial%20r%7D%5Cfrac%7B%5Cpartial%7D%7B%5Cpartial%20r%7D%5B-k%5Cfrac%7B%5Cpartial%20T%7D%7B%5Cpartial%20r%7D%5D%2B%5Cdot%7Bq%7D%20%3D%5Crho%20%20c_p%5Cfrac%7B%5Cpartial%20T%7D%7B%5Cpartial%20t%7D%5C%5C)
The heat diffusion equation for a 1-D cylindrical, radial coordinate system with internal heat generation is given as
![\frac{1}{\partial r}\frac{\partial}{\partial r}[-k\frac{\partial T}{\partial r}]+\dot{q} =\rho c_p\frac{\partial T}{\partial t}\\](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B%5Cpartial%20r%7D%5Cfrac%7B%5Cpartial%7D%7B%5Cpartial%20r%7D%5B-k%5Cfrac%7B%5Cpartial%20T%7D%7B%5Cpartial%20r%7D%5D%2B%5Cdot%7Bq%7D%20%3D%5Crho%20%20c_p%5Cfrac%7B%5Cpartial%20T%7D%7B%5Cpartial%20t%7D%5C%5C)
This equation is comparable to equation 2.26 when φ and z terms are considered 0.