Coal plants use a boiler to produce steam.
Answer:
Explanation:
The force exerted in a magnetic field is given as
F = q (v × B)
Where
F is the force entered
q is the charge
v is the velocity
B is the magnetic field
Given that,
The magnetic field is
B = 2•i + 4•j. T
The velocity of the electron is
v = 2•i + 6•j + 8•k. m/s
Also, the charge of an electron is
q = -1.602 × 10^-19 C.
Then note that,
V×B is the cross product of the speed and the magnetic field
Then,
F = q (V×B)
F = -1.602 × 10^-19( 2•i + 4•j +8•k × 2•i + 4•j)
Note
i×i=j×j×k×k=0
i×j=k. j×i=-k
j×k=i. k×j=-i
k×i=j. i×k=-j
F = -1.602 × 10^-19[(2•i + 4•j +8•k) × (2•i + 4•j)]
F = -1.602 × 10^-19 [2×2•(i×i) + 2×4•(i×j) + 4×2•(j×i) + 4×4•(j×j) + 8×2•(k×i) + 8×4•(k×j)]
F = -1.602 × 10^-19[4•0 + 8•k + 8•-k + 16•0 + 16•j + 32•-i]
F = -1.602 × 10^-19(0 + 8•k - 8•k + 0 + 16•j - 32•i)
F = -1.602 × 10^-19(16•j - 32•i)
F = -1.602 × 10^-19 × ( -32•i + 16•j)
F = 5.126 × 10^-18 •i - 2.563 × 10^-18 •j
Then, the x component of the force is
Fx = 5.126 × 10^-18 N
Also, the y component of the force is
Fy = -2.563 × 10^-18 N
V = d ÷ t --> bc d=vt
V = (76+54)÷(2+5) = 130÷7 = 18.57km/hr
If the lightbulb A in the circuit shown in the image burned out, the path for the current to flow is disrupted because one of its terminals is connected direct to the source. So, there will be no current through the lightbulbs B, C, and D, and they will turn off. Similarly it will happen, if the lightbulb D burned out.
If the lightbulb B burned out the current will continue circulating through the lightbulbs A, C, and D, because lightbulb B is connected in parallel. Similarly it will happen, if the lightbulb C burned out.
Answer: 197
Explanation:
Because mechanical energy and mass it speeds up