the answers going to be A
Answer:
I(x) = 1444×k ×
I(y) = 1444×k ×
I(o) = 3888×k ×
Explanation:
Given data
function = x^2 + y^2 ≤ 36
function = x^2 + y^2 ≤ 6^2
to find out
the moments of inertia Ix, Iy, Io
solution
first we consider the polar coordinate (a,θ)
and polar is directly proportional to a²
so p = k × a²
so that
x = a cosθ
y = a sinθ
dA = adθda
so
I(x) = ∫y²pdA
take limit 0 to 6 for a and o to
for θ
I(x) =
y²p dA
I(x) =
(a sinθ)²(k × a²) adθda
I(x) = k
da ×
(sin²θ)dθ
I(x) = k
da ×
(1-cos2θ)/2 dθ
I(x) = k
×
I(x) = k ×
× (
I(x) = k ×
×
I(x) = 1444×k ×
.....................1
and we can say I(x) = I(y) by the symmetry rule
and here I(o) will be I(x) + I(y) i.e
I(o) = 2 × 1444×k ×
I(o) = 3888×k ×
......................2
Answer:
The time is 1.8s
Explanation:
The ball droped, will freely fall under gravity.
Hence we use free fall formula to calculate the time by the ball to hit the ground

Where h is the height from which the ball is droped, g is the acceleration due to gravity that acted on the ball, and t is the time taken by the ball to hit the ground.
From the question,
h=16m
Also, let take

By substitution we obtain,


Diving through by 9.8


square root both sides, we obtain


Answer:
I know u need this
Explanation:
You gave me the runaround
I really hate the runaround
You really got me paranoid
I always keep a gun around
You always give me butterflies
When you come around
When you come around
When you come around
Max height occurs when v = 0.
v(t) = ds(t)/dt
v(t) = 80 - 32t
0 = 80 - 32t
t = 5/2
s(5/2) = 80(5/2) - 16(5/2)^2
s(5/2) = 100
Answer: 100 ft
96 = 80t - 16t²
t = 3, 2
(80 ± √256) / 32 using the quadratic equation.
v(2) = 16
v(3) = -16