Answer:

Explanation:
The proton is under a linear motion with constant acceleration. So, we use the kinemtic equations to calculate its final speed. We know its acceleration, its initial speed and its traveled distance. Thus, we use the following equation:

Answer:
40.92 m/s
Explanation:
The computation is shown below:
Ek = 1 ÷2mv²...............................(1)
v = √(2Ek/m).......................... (2)
Here EK denotes kinetic energy
m denotes mass
v denotes velocity
Given that
m = 0.25kg and Ek = 209.3J
So,
v = √(2×209.3 ÷0.25)
= √1674.4
= 40.92 m/s
Answer:
0.21486 mm
Explanation:
The formula for the maximum intensity is given by;
I = I_o•cos²(Φ/2)
Now,we are not given Φ but it can be expressed in terms of what we are given as; Φ = πdy/(λL)
Where;
y is the distance from the central maximum
d is the distance between the slits
λ is the wavelength
L is the distance to the screen
Thus;
I = I_o•πdy/(λL)
We are given;
d = 0.05 mm = 0.5 × 10^(-3) m
λ = 540 nm = 540 × 10^(-9) m
L = 1.25 m
I/I_o = 50% = 0.5
From earlier, we saw that;
I = I_o•πdy/(λL)
We have I/I_o = 0.5
Thus;
I/I_o = πdy/(λL)
Plugging in the relevant values;
0.5 = (π × 0.5 × 10^(-3) × y)/(540 × 10^(-9) × 1.25)
Making y the subject, we have;
y = (0.5 × 540 × 10^(-9) × 1.25)/(π × 0.5 × 10^(-3))
y = 0.00021486 m
Converting to mm, we have;
y = 0.21486 mm
Answer:
1.4 m/s/s (2.s.f)
Explanation:
The formula for centripetal acceleration is:
, where v is velocity and r is the radius.
In the question we are given the information that the car has a mass of 1300kg, a velocity of 2.5m/s, and a turn radius of 8.5m which are all the values we need. Therefore we can simply substitute in the values to solve the question:

Therefore the centripetal acceleration of the car is 1.4m/s/s. (2.s.f)
Hope this helped!
Any electromagnetic wave, like light or heat.