Physical chemistry is the area that deals with the
mechanisms, the rate, and the energy transfer that occurs when matter undergoes
a change. So the correct option for the given question is option “B”. Whenever
there is a change in the state of matter, the physical properties definitely
undergo a change. A solid matter will always have a definite shape and volume,
while a liquid has a definite volume but no shape. Gases do not have either definite
volume or shape. Chemical properties might not be affected, but physical
properties are definitely impacted when a matter undergoes change.
<h3>
Answer:</h3>
Chlorine gas (Cl₂)
<h3>
Explanation:</h3>
- According to the Graham's law of diffusion, the diffusion rate of a gas is inversely proportional to the square root of its density or molar mass.
- Therefore, a lighter gas will diffuse faster at a given temperature compared to a heavy gas.
- Consequently, the heavier a gas is then the denser it is and the slower it diffuses at a given temperature and vice versa.
In this case we are given gases, CI₂
, H₂,He and Ne.
- We are required to identify the gas that will diffuse at the slowest rate.
- In other words we are required to determine the heaviest gas.
Looking at the molar mass of the gases given;
Cl₂- 70.91 g/mol
H₂- 2.02 g/mol
He - 4.00 g/mol
Ne- 20.18 g/mol
Therefore, chlorine gas is the heaviest and thus will diffuse at the slowest rate among the choices given.
Answer: 1) p⁺ = 22; number of protons.
e⁻ = 19 - 1 = 18; number of electrons.
Net charge is +4, because atom has 4 protons more than electrons.
Proton is a subatomic particle with a positive electric charge of +1e elementary charge.
2) p⁺ = 22; number of protons.
e⁻ = 19 + 3 = 22; number of electrons.
Net charge is 0 (neutral charge), because atom has same number of protons and electrons.
Hope this helps :)
<span>Answer:
2 C8H18 + 25 O2 => 16 CO2 + 18 H2O
1.0 kg = 1000 g C8H18 = 1000 g / 114.2293 g/mole = 8.75 moles C8H18
8.75 moles C8H18 produce (16/2) (8.75) = 70 moles CO2
70 moles CO2 = (70 moles) (44.0096 g/mole) = 3081 g CO2 = 3.1 kg CO2</span>