Answer:
0.017 N
Explanation:
The relevant relation is ...
F = GMm/r²
where G is the universal gravitational constant, 6.67408 × 10^-11 m^3·kg^-1·s^-2, M and m are the masses of the objects, and r is the distance between them.
__
Filling in the given numbers, we find the force to be ...
F = (6.67408 × 10^-11 m^3·kg^-1·s^-2)(8.7 × 10^20 kg)(77 kg)/(1.6 × 10^7 m)^2
where m in this expression is the unit "meters".
F = 6.67408 · 8.7 · 77/2.56 × 10^(-11 +20 -2·7) N ≈ 0.017 N
The asteroid exerts a force of about 0.017 N on Sally.
__
<em>Additional comment</em>
That's about 0.000023 times the force of Earth's gravity.
Answer:
Wouldn't it be 17.5. Force doubles in weight.
Explanation:
Momentum = (mass) x (velocity)
Original momentum before the hit =
(0.16 kg) x (38 m/s) this way <==
= 6.08 kg-m/s this way <==
Momentum after the hit =
(0.16) x (44 m/s) that way ==>
= 7.04 kg-m/s that way ==>
Change in momentum = (6.08 + 7.04) = 13.12 kg-m/s that way ==> .
-----------------------------------------------
Change in momentum = impulse.
Impulse = (force) x (time the force lasted)
13.12 kg-m/s = (force) x (0.002 sec)
(13.12 kg-m/s) / (0.002 sec) = Force
6,560 kg-m/s² = 6,560 Newtons = Force
( about 1,475 pounds ! ! ! )
Answer:
only thing I think of when I see that is 'Just Wondering'
Explanation:
There are many forms of energy, but they can all be put into two categories: kinetic and potential. Kinetic energy is motion––of waves, electrons, atoms, molecules, substances, and objects. Potential energy is stored energy and the energy of position––gravitational energy