Answer:
Velocity = distance / time
V = 10/1
V = 10km/h
Answer:
I₁ = 1.6 A (through 7 Ohm Resistor)
I₂ = 1.3 A (through 8 Ohm Resistor)
I₃ = I₁ - I₂ = 1.6 A - 1.3 A = 0.3 A (through 4 Ohm Resistor)
Explanation:
Here we consider two loops doe applying Kirchhoff's Voltage Law (KVL). The 1st loop is the left side one with a voltage source of 12 V and the 2nd Loop is the right side one with a voltage source of 9 V. We name the sources and resistor's as follows:
R₁ = 7 Ω
R₂ = 4 Ω
R₃ = 8 Ω
V₁ = 12 V
V₂ = 9 V
Now, we apply KVL to 1st Loop:
V₁ = I₁R₁ + (I₁ - I₂)R₂
12 = 7I₁ + (I₁ - I₂)(4)
12 = 7I₁ + 4I₁ - 4I₂
I₁ = (12 + 4 I₂)/11 ------------ equation (1)
Now, we apply KVL to 2nd Loop:
V₂ = (I₂ - I₁)R₂ + I₂R₃
9 = (I₂ - I₁)(4) + 8I₂
9 = 4I₂ - 4I₁ + 8I₂
9 = 12I₂ - 4I₁ -------------- equation (2)
using equation (1)
9 = 12I₂ - 4[(12 + 4 I₂)/11]
99 = 132 I₂ - 48 - 16 I₂
147 = 116 I₂
I₂ = 147/116
I₂ = 1.3 A
use this value in equation 2:
9 = 12(1.3 A) - 4I₁
4I₁ = 15.6 - 9
I₁ = 6.6 A/4
I₁ = 1.6 A
Hence, the currents through all resistors are:
<u>I₁ = 1.6 A (through 7 Ohm Resistor)</u>
<u>I₂ = 1.3 A (through 8 Ohm Resistor)</u>
<u>I₃ = I₁ - I₂ = 1.6 A - 1.3 A = 0.3 A (through 4 Ohm Resistor)</u>
Answer:12.8 ft/s
Explanation:
Given
Speed of hoop 
height of top 
Initial energy at bottom is

Where m=mass of hoop
I=moment of inertia of hoop
=angular velocity
for pure rolling 



Energy required to reach at top


Thus 512.2 m is converted energy is spent to raise the potential energy of hoop and remaining is in the form of kinetic and rotational energy

Therefore



The acceleration of the car which changes the speed uniformly is 4 m/s²
<h3>What is acceleration?</h3>
Acceleration can be defined as the rate change of velocity with time.
acceleration a = (Δv) / (Δt)
Given is the initial velocity 6m/s and final velocity 42m/s, the time take fir this change in speed is 9s.
Substitute the values, we have
a = (42-6)/9
a = 36/9
a =4 m/s²
Thus, the acceleration is 4 m/s²
Learn more about acceleration.
brainly.com/question/12550364
#SPJ1
Answer:
Technician B
Explanation:
here on analyzing both the statements from technician A and technician B. The Statement from Technician B is more logical and correct. That the power-assisted brake system reduces the force that the driver must exert on the brake pedal.
The power-assisted brake system does not reduce the distance of stopping. What it does is it reduces the force to be applied by the driver. Thus, making the drive more comfortable.