Answer:
 This is an attempt to more clearly visualize the nature of single slit diffraction. The phenomenon of diffraction involves the spreading out of waves past openings which are on the order of the wavelength of the wave.
Explanation:
 
        
             
        
        
        
Kinetic energy of golf club = 65J, 
kinetic energy supplied to golf ball = 20% of 65 = 0.2 * 65 = 13J,
kinetic energy of ball = [mass * Velocity²]/2,
mass = 46gm = 0.046Kg,
[0.046 * V²]/2 = 13, or 0.046 *V² = 26, 
V² = 26/0.046 = 565.22, 
V = 23.77 m/sec = initial velocity of golf ball after hitting.
        
             
        
        
        
B-Pitcher C-Catcher H-Strike I-Umpire G-Strike Zone E- Foul Ball F- Ball J- Pick-off D-Error A- Shortstop. I think (Sorry for them being out of order. I had to break them down)
        
                    
             
        
        
        
Internal energy, U, is equal to the work done or by the system, plus the heat of the system:
<span>ΔU=q+w
</span>in the question they tell you the work done by the system, and the internal energy:
8185 J= -346 J + q work is negative because it was done BY the system.
substitute in: <span>q=m∗Cp∗ΔT</span> and solve for <span>Cp</span><span>.
</span>
-------------------------------------
remember that <span>ΔT=<span>Tf</span>−<span>Ti
</span></span>
so the equation, really, is: <span>q=m∗Cp∗(<span>Tf</span>−<span>Ti</span>)</span><span>
------------------------------------------
</span>
<span>185J=−346J+[m∗Cp∗(<span>Tf</span>−<span>Ti</span>)]
</span>plug in the rest of your values and solve for <span><span>Cp</span></span>
        
             
        
        
        
Answer:
Beth went back toward her origin
Explanation:
Please, see the attached image that represent's Beth's path.
She started her walk 2 meters from the origin (0) and after 6 seconds she headed back to position zero (0) the origin. Notice the second half of the graph as a segment going down, thus reducing her distance from the origin, and getting closer to it.