Answer:
1. 3 m
2. 27 s
Explanation:
1. "A car traveling at +33 m/s sees a red light and has to stop. If the driver can accelerate at -5.5 m/s², how far does it travel?"
Given:
v₀ = 33 m/s
v = 0 m/s
a = -5.5 m/s²
Unknown: Δx
To determine the equation you need, look for which variable you don't have and aren't solving for. In this case, we aren't given time and aren't solving for time. So look for an equation that doesn't have t in it.
Equation: v² = v₀² + 2aΔx
Substitute and solve:
(0 m/s)² = (33 m/s)² + 2(-5.5 m/s²) Δx
Δx = 3 m
2. "A plane starting from rest at one end of a runway accelerates at 4.8 m/s² for 1800 m. How long did it take to accelerate?"
Given:
v₀ = 0 m/s
a = 4.8 m/s²
Δx = 1800 m
Unknown: t
Equation: Δx = v₀ t + ½ a t²
Substitute and solve:
1800 m = (0 m/s) t + ½ (4.8 m/s²) t²
t ≈ 27 s
Stop lines are solid white lines painted across the traffic lanes at intersections and pedestrian crosswalks, indicating the exact place to stop.
Answer:
a little
Explanation:
First of all, it's not how you spell "tyres", it is tires.
Second of all, you already know the Mass so what you need to find out now is contact the road. You Know that your number and letter are squared so that would turn into 6m x 2.4. Then you do the math do continue on to finish it. Have a great day!! Good luck with the answer!!
E. all of the above
An umbrella tends to move upward on a windy day because _<span>A. buoyancy increases with increasing wind speed </span>
<span>B. air gets trapped under the umbrella and pushes it up </span>
<span>C. the wind pushes it up </span>
<span>D. a low-pressure area is created on top of the umbrella </span>
Answer:
(a) 0.42 m
(b) 20.16 N/m
(c) - 0.42 m
(d) - 0.21 m
(e) 17.3 s
Solution:
As per the question:
Mass, m = 0.56 kg
x(t) = (0.42 m)cos[cos(6 rad/s)t]
Now,
The general eqn is:

where
A = Amplitude
= angular frequency
t = time
Now, on comparing the given eqn with the general eqn:
(a) The amplitude of oscillation:
A = 0.42 m
(b) Spring constant k is given by:


Thus

(c) Position after one half period:

(d) After one third of the period:

(e) Time taken to get at x = - 0.10 m:


t = 17.3 s