Answer:
244mm
Explanation:
I₁ = 3.35A
I₂ = 6.99A
μ₀ = 4π*10^-7
force per unit length (F/L) = 6.03*10⁻⁵N/m
B = (μ₀ I₁ I₂ )/ 2πr .........equation i
B = F / L ..........equation ii
equating equation i & ii,
F / L = (μ₀ I₁ I₂ )/ 2πr
Note F/L = B = F
F = (μ₀ I₁ I₂ ) / 2πr
2πr*F = (μ₀ I₁ I₂ )
r = (μ₀ I₁ I₂ ) / 2πF
r = (4π*10⁻⁷ * 3.35 * 6.99) / 2π * 6.03*10⁻⁵
r = 1.4713*10⁻⁵ / 6.03*10⁻⁵
r = 0.244m = 244mm
The distance between the wires is 244m
Answer:
75.5g
Explanation:
From the ionic equation, we can write
next we find the number of charge
Note Q=it
for i=8.5A, t=3.75 to secs 3.75*60*60=13500secs
hence
Since one faraday represent one mole of electron which equal 96500C
Hence the number of mole produced by 114750C is
114750/96500=1.2mol
The mass of copper produced is
Hence the amount of copper produced is 75.5g
It is false, bounded rationality is the idea that rationality is limited when individuals make decisions. ... Limitations include the difficulty of the problem requiring a decision, the cognitive capability of the mind, and the time available to make the decision.
But one thing, NEXT TIME TELL US THE QUESTION FIRST AND DON'T JUST LEAVE BLINDLY ASKING SOMETHING.
To solve this problem it is necessary to apply the principles of conservation of Energy in order to obtain the final work done.
The electric field in terms of the Force can be expressed as
Where,
F = Force
E= Electric Field
q = Charge
Puesto que el trabajo realizado es equivalente al cambio en la energía cinetica entonces tenemos que
KE = W
KE = F*d
In the First Case,
In Second Case,
The total energy change would be subject to,
Therefore the Kinetic Energy change of the charged object is 27.976J