Answer:
t_{out} =
t_{in}, t_{out} = 
Explanation:
This in a relative velocity exercise in one dimension,
let's start with the swimmer going downstream
its speed is

The subscripts are s for the swimmer, r for the river and g for the Earth
with the velocity constant we can use the relations of uniform motion
= D / 
D = v_{sg1} t_{out}
now let's analyze when the swimmer turns around and returns to the starting point

= D / 
D = v_{sg 2} t_{in}
with the distance is the same we can equalize

t_{out} = t_{in}
t_{out} =
t_{in}
This must be the answer since the return time is known. If you want to delete this time
t_{in}= D / 
we substitute
t_{out} = \frac{v_s - v_r}{v_s+v_r} ()
t_{out} = 
Answer:
Jesseca wanted to create a material that reflected most of the light that fell on it.
Explanation: The Graphite was the material in the passage that had reflected most of the light.
Answer:
I = 24 A
Explanation:
This is Parallel Circuit and it is the first principle of parallel circuit that voltage will be equal in all components in the circuit
It includes 10 resistors Therefore the voltage across,
R1 = R2 = R3 = R4 = R5 = R6 = R7 = R8 = R9 = R10 = voltage in battery
<h2>
Ohm's Law</h2>
We will apply Ohm's Law to each resistor to find its current because we know the voltage across each resistor is 12 V and the resistance of each resistor is 5Ω
I (R1) = E (R1) / R1
I (R1) = 12v / 5Ω
I (R1) = 2.4 A
The value resistance E of all resistors are same therefore by applying the formula above the value of current in all resistors will be 2.4 A
The Total current in the circuit will be
I (total) = I (1) + I (2) + I (3) + I (4) + I (5) + I (6) + I (7) + I (8) + I (9) + I (10)
I (total) = 2.4 + 2.4 + 2.4 + 2.4 + 2.4 + 2.4 + 2.4 + 2.4 + 2.4 + 2.4
I (total) = 24 A
Answer: Due that we don't know the initial speed after hitting the ball, we are going to accept that the ball goes up for half of the time and then falls during other half part, that is 3.0 seconds each. Then we know that ball's movement is ruled by the acceleration of gravity formula, as follows: H = Vi * T + 1/2 * g * T^2 V = Vi + g * T where: H is height, Vi initial speed, g gravity acceleration and T time When we only consider the second half of the trajectory, we have that initial speed at the top of that movement is zero, because ball goes up till top, where stops and starts to go down, so : H = 0 * 3 + 1/2 * 32 * 3^2 = 144 ft. So the height of the pop-up is 144 feet.