Answer:
2.4 m/s
Explanation:
Given:
Velocity of the object moving north = 2.1 m/s
Velocity of the river moving eastward = 1.2 m/s
The resultant velocity is the vector sum of the velocities of object and river.
Since the directions of velocity of object and river are perpendicular to each other, the magnitude of the resultant velocity is obtained using Pythagoras Theorem.
The velocities are the legs of the right angled triangle and the resultant velocity is the hypotenuse.
The magnitude of the resultant velocity (R) is given as:

Therefore, the resultant velocity has a magnitude of 2.4 m/s.
Answer:
7560 Joules
Explanation:
= Mass of first car = 
= Mass of second car = 
= Initial Velocity of first car = 0.3 m/s
= Initial Velocity of second car = -0.12 m/s
v = Velocity of combined mass
As linear momentum of the system is conserved

Energy lost is

The Energy lost in the collision is 7560 Joules
The planet closest to the sun; Mercury.
<u>Answer</u>
D) 3100 Liters
<u>Explanation</u>
To get the volume if the balloon you need to use the combined equation of the low of gases.
P₁V₁/T₁ = P₂V₂/T₂
(20×150)/(27+273) = (1×V₂)/(37+273)
3000/300 = V₂/310
10 = V₂/310
V₂ = 10 × 310
= 3100 Liters
The source and the observer are moving towards each other. The observer is moving toward the source. The source is moving away from the observer