Answer:
0.661 m/s²
Explanation:
g = MG / r²
g = (1.31×10²² kg) (6.67×10⁻¹¹ m³/kg/s²) / (1.15×10⁶ m)²
g = 6.61×10⁻¹ m/s²
g = 0.661 m/s²
Answer:
Partial Pressure of F₂ = 1.30 atm
Partial pressure of Cl₂ = 0.70 atm
Explanation:
Partial pressure for gases are given by Daltons law.
Total pressure of a gas mixture = sum of the partial pressures of individual gases
Pt = P(f₂) + P(cl₂)
Partial pressure = mole fraction × total pressure
Let the mass of each gas present be m
Number of moles of F₂ = m/38 (molar mass of fluorine = 38 g/Lol
Number of moles of Cl₂ = m/71 (molar mass of Cl₂)
Mole fraction of F₂ = (m/38)/((m/38) + (m/71)) = 0.65
Mole fraction of Cl₂ = (m/71)/((m/38) + (m/71)) = 0.35 or just 1 - 0.65 = 0.35
Partial Pressure of F₂ = 0.65 × 2 = 1.30 atm
Partial pressure of Cl₂ = 0.35 × 2 = 0.70 atm

Hi pupil Here's Your answer :::
➡➡➡➡➡➡➡➡➡➡➡➡➡
Student's justification is not correct. Two equal and opposite force cancel each other if the act on the same body. According to the third law of motion action and reaction forces are equal and opposite but they both act on different bodies. Hence, they cannot cancel each other.
When we push a message track, then the applied force on the truck is not sufficient to overcome the force of friction between the tyres of truck and ground, hence, truck does not move.
⬅⬅⬅⬅⬅⬅⬅⬅⬅⬅⬅⬅⬅
Hope this helps .
Answer:
true
Explanation:
the sun warms the atmosphere and warms the air which drives our weather
Answer:
Therefore, the moment of inertia is:
Explanation:
The period of an oscillation equation of a solid pendulum is given by:
(1)
Where:
- I is the moment of inertia
- M is the mass of the pendulum
- d is the distance from the center of mass to the pivot
- g is the gravity
Let's solve the equation (1) for I


Before find I, we need to remember that
Now, the moment of inertia will be:
Therefore, the moment of inertia is:
I hope it helps you!