Answer:
1019.27 g.
Explanation:
- For the balanced reaction:
<em>2Na + Cl₂ → 2NaCl,</em>
It is clear 2 moles of Na with 1 mole of Cl₂ to produce 2 moles NaCl.
- Firstly, we need to calculate the no. of moles of Cl₂ is needed to react with 57.5 mol Na:
2 moles of Na need → 1 mol of Cl₂, from the stichiometry.
57.5 moles of Na need → ??? mol of Cl₂.
<em>∴ The no. of moles of Cl₂ is needed to react with 57.5 mol Na =</em> (1 mol)(57.5 mol)/((2 mol) <em>= 28.75 mol.</em>
<em>∴ the mass of Cl₂ is needed to react with 57.5 mol Na = (no. of moles of Cl₂)(molar mass of Cl₂) =</em> (28.75 mol)(35.453 g/mol) <em>= 1019.27 g.</em>
Answer:
The presence of nitrogen in the organic compound is detected by fusing organic compounds with sodium metal to give sodium cyanide (NaCN) soluble in water. This is converted into sodium ferrocyanide by the addition of sufficient quantities of ferrous sulphate.
Explanation:
It is what I found online.
The unit expressed in 660 nm of light represents the wavelength of light. If you want to determine the frequency, you use the speed of light to relate the two. The formula is:
c = λν
where
λ is the wavelength
ν is the frequency
c is the speed of light = 3×10⁸ m
Apply SI units:
(3×10⁸ m) = (660×10⁻⁹ m)(ν)
Solving for ν,
<em>ν = 4.55×10¹⁴ s⁻¹</em>
Answer:
Explanation:
A. Attached is a page which contain the structural formula of the three compounds of C3H80.
Condensed structural formula of C3H8O:
Propan-1-ol: CH3CH2CH2OH
Propan-2-ol: CH3CH(OH)CH3
Methoxy methane: CH3OCH2CH3
B. Attached are is a page which contain the structural formula of the three compounds of C3H60.
Condensed structural formula of C3H6O:
Propanal: CH3CH2CHO
Propanone: CH3COCH3
Cyclopropanol: (C3H5)OH
2-propen-1-ol: CH2CHCH2OH
1-propenol: CH3CHCHOH
Answer:
The correct answer is 146 g/mol
Explanation:
<em>Freezing point depression</em> is a colligative property related to the number of particles of solute dissolved in a solvent. It is given by:
ΔTf = Kf x m
Where ΔTf is the freezing point depression (in ºC), Kf is a constant for the solvent and m is the molality of solution. From the problem, we know the following data:
ΔTf = 1.02ºC
Kf = 5.12ºC/m
From this, we can calculate the molality:
m = ΔTf/Kf = 1.02ºC/(5.12ºC/m)= 0.199 m
The molality of a solution is defined as the moles of solute per kg of solvent. Thus, we can multiply the molality by the mass of solvent in kg (250 g= 0.25 kg) to obtain the moles of solute:
0.199 mol/kg benzene x 0.25 kg = 0.0498 moles solute
There are 0.0498 moles of solute dissolved in the solution. To calculate the molar mass of the solute, we divide the mass (7.27 g) into the moles:
molar mass = mass/mol = 7.27 g/(0.0498 mol) = 145.9 g/mol ≅ 146 g/mol
<em>Therefore, the molar mass of the compound is 146 g/mol </em>