<span>the rapid expansion of matter from a state of extremely high density and temperature that according to current cosmological theories marked the origin of the universe.</span>
what is the pOH of the solution? 10.25 is the answer
Answer:
Explanation:
Ionic compounds are electrically neutral because the charges of the cations and anions that make up the compound cancel each other out. In the case of salt for example, sodium has a charge of positive one, and chloride has a charge of negative one. Together, they neutralize the compound.
1.) 0.875atm x 760.0 mmHg/atm
2.) 8I
7I 0
6I 0
5I 0
4I 0
3I 0
2I--------- 000000000 0I
1I-0------------------------ I---------------
0 50 100 150
Boiling point(degrees Celsius)
3.) The warmer the molecules are the faster they move like boiling water the gases are coming out of the water
4.)no clue
5.) A {solution} is always transparent, light passes through with no scattering from solute particles which are the molecule in size. The solution is homogeneous and does not settle out. A solution cannot be filtered but can be separated using the process of distillation.
A {suspension} is cloudy and heterogeneous. The particles are larger than 10,000 Angstroms which allows them to be filtered. If a suspension is allowed to stand the particles will separate out.
<span>A {colloid} is intermediate between a solution and a suspension. While a suspension will separate out a colloid will not. Colloids can be distinguished from solutions using the Tyndall effect. Light passing through a colloidal dispersion, such as smoky or foggy air, will be reflected by the larger particles and the light beam will be visible. A hydrocolloid can simply be defined as a substance that forms a gel when it comes in contact with water. Such substances include both polysaccharides and proteins.
6.)</span><span>The random movement of microscopic particles suspended in a liquid or gas, caused by collisions with molecules of the surrounding medium. Also called Brownian motion, molecular movement, pedesis.
hope that helps please mark me as brainly
</span>
Is true. Nitrogen gas behaves more like an ideal gas as the
temperature increases. Under normal conditions such as normal pressure and temperature
conditions , most real gases behave qualitatively as an ideal gas. Many
gases such as air , nitrogen , oxygen ,hydrogen , noble gases , and some heavy
gases such as carbon dioxide can be treated as ideal gases within a reasonable tolerance. Generally,
the removal of ideal gas conditions tends to be lower at higher temperatures and lower density (that is at lower pressure ), since the work made by the intermolecular
forces is less important compared to the kinetic energy<span> of the particles, and the size of the molecules is less important
compared to the empty space between them. </span><span>The ideal gas model
tends to fail at lower temperatures or at high pressures, when intermolecular
forces and intermolecular size are important.</span>