The majority of their bonds are nonpolar covalent carbon-to-hydrogen linkages.
Answer:
T°fussion of solution is -18°C
Explanation:
We have to involve two colligative properties to solve this. Let's imagine that the solute is non electrolytic, so i = 1
First of all, we apply boiling point elevation
ΔT = Kb . m . i
ΔT = Boiling T° of solution - Boiling T° of pure solvent
Kb = ebuliloscopic constant
105°C - 100° = 0.512 °C kg/mol . m . 1
5°C / 0.512 °C mol/kg = m
9.7 mol/kg = m
Now that we have the molality we can apply, the Freezing point depression.
ΔT = Kf . m . i
Kf = cryoscopic constant
0° - (T°fussion of solution) = 1.86 °C/m . 9.76 m . 1
- (1.86°C /m . 9.7 m) = T°fussion of solution
- 18°C = T°fussion of solution
Answer:
2.40 M
Explanation:
The molarity of a solution tells you how many moles of solute you get per liter of solution.
Notice that the problem provides you with the volume of the solution expressed in milliliters,
mL
. Right from the start, you should remember that you must convert this volume to liters by using the conversion factor
1 L
=
10
3
mL
Now, in order to get the number of moles of solute, you must use its molar mass. Now, molar masses are listed in grams per mol,
g mol
−
1
, which means that you're going to have to convert the mass of the sample from milligrams to grams
1 g
=
10
3
mg
Sodium chloride,
NaCl
, has a molar mass of
58.44 g mol
−
1
, which means that your sample will contain
unit conversion
280.0
mg
⋅
1
g
10
3
mg
⋅
molar mass
1 mole NaCl
58.44
g
=
0.004791 moles NaCl
This means that the molarity of the solution will be
c
=
n
solute
V
solution
c
=
0.004791 moles
2.00
⋅
10
−
3
L
=
2.40 M
The answer is rounded to three sig figs, the number of sig figs you have for the volume of the solution.
Answer: increasing the positive charge of the positively charged object and increasing the negative charge of the negatively charged object.
Explanation:
edge
There’s no element with symbol M