Answer:
Francium (Fr)
Explanation:
From the given choices, francium will have the lowest ionization energy.
Ionization energy is the energy required to remove the most loosely held electron within an atom.
The magnitude of the ionization energy depends on the characteristics of the atom in relation to its nuclear charge, atomic radius, stability etc.
- Generally on the periodic table, ionization energy increases from left to right on the table
- As you go from metals to non-metals and to gases, the value of the ionization energy increases steadily.
- Down the group, the value reduces.
- Since Francium is the most metallic of all the given choices, it has the highest ionization energy.
Answer: it will take 89.93secs
Explanation:Please see attachment for explanation
Answer:
a) Schmidt number
Explanation:
Prandtl number in heat transfer is analogues to Schmidt number in mass transfer.
Prandtl number in heat transfer is the ration of momentum diffusivity to the heat diffusivity.

Whereas, Schmidt number in mass transfer is the ratio of momentum diffusivity to the mass diffusivity.

Answer:
2.232 g/L
Explanation:
Assuming 1 mol, volume at STP is 22.4 L so you simply divide 50g by 22.4 L to get density
Answer:
Answers are in the explanation
Explanation:
Ksp of CdF₂ is:
CdF₂(s) ⇄ Cd²⁺(aq) + 2F⁻(aq)
Ksp = 6.44x10⁻³ = [Cd²⁺] [F⁻]²
When an excess of solid is present, the solution is saturated, the molarity of Cd²⁺ is X and F⁻ 2X:
6.44x10⁻³ = [X] [2X]²
6.44x10⁻³ = 4X³
X = 0.1172M
<h3>[F⁻] = 0.2344M</h3><h3 />
Ksp of LiF is:
LiF(s) ⇄ Li⁺(aq) + F⁻(aq)
Ksp = 1.84x10⁻³ = [Li⁺] [F⁻]
When an excess of solid is present, the solution is saturated, the molarity of Li⁺ and F⁻ is XX:
1.84x10⁻³ = [X] [X]
1.84x10⁻³ = X²
X = 0.0429
<h3>[F⁻] = 0.0429M</h3><h3 /><h3>The solution of CdF₂ has the higher fluoride ion concentration</h3>