Answer: 585 J
Explanation:
We can calculate the work done during segment A by using the work-energy theorem, which states that the work done is equal to the gain in kinetic energy of the object:

where Kf is the final kinetic energy and Ki the initial kinetic energy. The initial kinetic energy is zero (because the initial velocity is 0), while the final kinetic energy is

The mass is m=1.3 kg, while the final velocity is v=30 m/s, so the work done is:

Normally a storm surge.
Experience: I lived through Andrew and Wilma
Why does a satellite in a circular orbit travel at a constant speed? why does a satellite in a circular orbit travel at a constant speed? there is a force acting opposite to the direction of the motion of the satellite. there is no component of force acting along the direction of motion of the satellite. the net force acting on the satellite is zero. the gravitational force acting on the satellite is balanced by the centrifugal force acting on the satellite?
..b.25
Answer:
The boat won't be able to move if the oars were out and there was no thruster. If there was a flow of the water then yes there would be a moving boat.