Answer:
V = 12.93 L
Explanation:
Given data:
Number of moles = 0.785 mol
Pressure of balloon = 1.5 atm
Temperature = 301 K
Volume of balloon = ?
Solution:
The given problem will be solve by using general gas equation,
PV = nRT
P= Pressure
V = volume
n = number of moles
R = general gas constant = 0.0821 atm.L/ mol.K
T = temperature in kelvin
Now we will put the values.
V = nRT/P
V = 0.785 mol × 0.0821 atm.L/ mol.K × 301 K / 1.5 atm
V = 19.4 L /1.5
V = 12.93 L
I'd say he ways about 35 kilograms, but I'm probably wrong, xD
Answer:
-2.86x10³ kJ
Explanation:
The enthalpy of a reaction (ΔH) is defined as the heat produced or consumed by a reaction. In the reaction:
2 C₂H₆(g) + 7 O₂(g) → 4 CO₂(g) + 6 H₂O(g)
The ΔH is the heat envolved in the reaction per 2 moles of C₂H₆. 1.43x10³ kJ are involved when 1 mole reacts. Thus, when 2 moles react, involved heat is:
1.43x10³ kJ ₓ 2 = <em>2.86x10³ kJ</em>. As the reaction is a combustion reaction (Produce CO₂ and H₂O), the heat involved in the reaction is <em>PRODUCED, </em>that means ΔH is negative, <em>-2.86x10³ kJ</em>
Explanation:
Atomic number is defined as the number of an element which represents total number of protons.
When an atom is neutral then it means it contains same number of protons and electrons.
On the other hand, atomic mass is defined as the sum of total number of protons and neutrons present in an atom.
Protons of every element remains fixed because it shows the identity of each element but if we change the number of neutrons then also identity of the atom will remain fixed. This is because changing the number of neutrons will not show any change in number of protons.
For example,
and
are isotopes of hydrogen and they have same number of protons but different number of neutrons.
Thus, we can conclude that number of neutrons can vary without changing the identity of the element.