Draw CO2, C in the middle and O on each side. O has 6 e- and C has 4, so 6+6+4= 14 e-.
The thermal decomposition of calcium carbonate will produce 14 g of calcium oxide. The stoichiometric ratio of calcium carbonate to calcium oxide is 1:1, therefore the number of moles of calcium carbonate decomposed is equal to the number of moles of calcium oxide formed.
Further Explanation:
To solve this problem, follow the steps below:
- Write the balanced chemical equation for the given reaction.
- Convert the mass of calcium carbonate into moles.
- Determine the number of moles of calcium oxide formed by using the stoichiometric ratio for calcium oxide and calcium carbonate based on the coefficient of the chemical equation.
- Convert the number of moles of calcium oxide into mass.
Solving the given problem using the steps above:
STEP 1: The balanced chemical equation for the given reaction is:

STEP 2: Convert the mass of calcium carbonate into moles using the molar mass of calcium carbonate.

STEP 3: Use the stoichiometric ratio to determine the number of moles of CaO formed.
For every mole of calcium carbonate decomposed, one more of a calcium oxide is formed. Therefore,

STEP 4: Convert the moles of CaO into mass of CaO using its molar mass.

Since there are only 2 significant figures in the given, the final answer must have the same number of significant figures.
Therefore,

Learn More
- Learn more about stoichiometry brainly.com/question/12979299
- Learn more about mole conversion brainly.com/question/12972204
- Learn more about limiting reactants brainly.com/question/12979491
Keywords: thermal decomposition, stoichiometry
Hello!
The concentration of the final solution when a<span> chemistry teacher adds 50.0 mL of 1.50 M H2SO4 solution to 200 mL of water is
0,3 MTo calculate that, you'll need to use the dilution law, where initial and final concentrations are M1 and M2 respectively, and initial and final volumes are V1 and V2, as shown below.
Keep in mind that the final volume is the sum of the 200 mL of water and the 50 mL of H</span>
₂SO₄ that were added by the teacher. 
Have a nice day!
For many (but not all) problems, you can simply round the atomic weights and the molar mass to the nearest 0.1 g/mole. HOWEVER, make sure that you use at least as many significant figures in your molar mass as the measurement with the fewest significant figures. In other words, never let your molar mass be the measured value that determines how many signficant figures to use in your answer!
The lattice structure of Lithium Fluoride (LiF) is comprised of positively charged lithium ions (Li+) and negatively charged fluoride ions (F-) that a linked together by ionic bonds.
The crystal structure of LiF corresponds to that of a face centered cubic (FCC) lattice with Li+ and F- ions occupying the lattice points in the unit cell.