Answer:
For most uses you'll want your water heated to 120 F(49 C) In this example you'd need a demand water heater that produces a temperature rise and it will take about 2 hours
Answer:
304.13 mph
Explanation:
Data provided in the question :
The Speed of the flying aircraft = 300 mph
Tailwind of the true airspeed = 50 mph
Now,
The ground speed will be calculated as:
ground speed = 
or
The ground speed = 
or
The ground speed = 304.13 mph
Hence, the ground speed is 304.13 mph
Answer:
a. Wa = 73.14 Btu/lbm
b. Sgen = 0.05042 Btu/lbm °R
c. Isentropic efficiency is 70.76%
d. Minimum specific work for compressor W = -146.2698 Btu/lbm [It is negative because work is being done on the compressor]
Explanation:
Complete question is as follows;
Air initially at 120 psia and 500oF is expanded by an adiabatic turbine to 15 psia and 200oF. Assuming air can be treated as an ideal gas and has variable specific heat.
a) Determine the specific work output of the actual turbine (Btu/lbm).
b) Determine the amount of specific entropy generation during the irreversible process (Btu/lbm R).
c) Determine the isentropic efficiency of this turbine (%).
d) Suppose the turbine now operates as an ideal compressor (reversible and adiabatic) where the initial pressure is 15 psia, the initial temperature is 200 oF, and the ideal exit state is 120 psia. What is the minimum specific work the compressor will be required to operate (Btu/lbm)?
solution;
Please check attachment for complete solution and step by step explanation
Answer: (b)
Explanation:
Given
Original length of the rod is 
Strain experienced is 
Strain is the ratio of the change in length to the original length

Therefore, new length is given by (Considering the load is tensile in nature)

Thus, option (b) is correct.