Answer:
The answer to your question is given below.
Explanation:
Mechanical advantage (MA) = Load (L)/Effort (E)
MA = L/E
Velocity ratio (VR) = Distance moved by load (l) / Distance moved by effort (e)
VR = l/e
Efficiency = work done by machine (Wd) /work put into the machine (Wp) x 100
Efficiency = Wd/Wp x100
Recall:
Work = Force x distance
Therefore,
Work done by machine (wd) = load (L) x distance (l)
Wd = L x l
Work put into the machine (Wp) = effort (E) x distance (e)
Wp = E x e
Note: the load and effort are measured in Newton (N), while the distance is measured in metre (m)
Efficiency = Wd/Wp x100
Efficiency = (L x l) / (E x e) x 100
Rearrange
Efficiency = L/E ÷ l/e x 100
But:
MA = L/E
VR = l/e
Therefore,
Efficiency = L/E ÷ l/e x 100
Efficiency = MA ÷ VR x 100
Efficiency = MA / VR x 100
None of the choices is an appropriate response.
There's no such thing as the temperature of a molecule. Temperature and
pressure are both outside-world manifestations of the energy the molecules
have. But on the molecular level, what it is is the kinetic energy with which
they're all scurrying around.
When the fuel/air mixture is compressed during the compression stroke,
the temperature is raised to the flash point of the mixture. The work done
during the compression pumps energy into the molecules, their kinetic
energy increases, and they begin scurrying around fast enough so that
when they collide, they're able to stick together, form a new molecule,
and release some of their kinetic energy in the form of heat.
Which object? More information is needed to answer this question
Answer:
False
Explanation:
Its the sum of those not the difference between them