Answer:
Explanation:
Magnetic field due to a long current carrying conductor
μ₀ / 4π x 2i / r ( i = current , r = distance of point from wire )
= 10⁻⁷ x 2 x 120 / 6.4 ( i = 120 A , r = 6.4m )
= 37.5 x 10⁻⁷ T .
= 3. 75 X 10⁻⁶ T .
= 3.75 µT.
b )
The direction of this field will be horizontal hence it will affect magnetic needle.
Well I have 2 examples.
AM/FM radio is a perfect type of technology.
A smart phone is also a great presentation of technology.
Answer:
The answer is B. Without a college education, workers will actually lose money in the long run.
Explanation:
Just got it right on the assignment
Answer:
w = √ 1 / CL
This does not violate energy conservation because the voltage of the power source is equal to the voltage drop in the resistence
Explanation:
This problem refers to electrical circuits, the circuits where this phenomenon occurs are series RLC circuits, where the resistor, the capacitor and the inductance are placed in series.
In these circuits the impedance is
X = √ (R² + (
-
)² )
where Xc and XL is the capacitive and inductive impedance, respectively
X_{C} = 1 / wC
X_{L} = wL
From this expression we can see that for the resonance frequency
X_{C} = X_{L}
the impedance of the circuit is minimal, therefore the current and voltage are maximum and an increase in signal intensity is observed.
This does not violate energy conservation because the voltage of the power source is equal to the voltage drop in the resistence
V = IR
Since the contribution of the two other components is canceled, this occurs for
X_{C} = X_{L}
1 / wC = w L
w = √ 1 / CL
Answer:
0.1 rev/s
Explanation:
M = mass of the merry go round = 200 kg
R = radius of merry go round = 6 m
= Moment of inertia of merry go round = (0.5) MR² = (0.5) (200) (6)² = 3600 kgm²
m = mass of the man = 100 kg
= Moment of inertia of merry go round when man sits on it at the edge = (0.5) MR² + mR² = (0.5) (200) (6)² + (100) (6)² = 7200 kgm²
= initial Angular speed of merry-go-round before man sit = 0.2 rev/s
= Angular speed of merry-go-round after man sit = ?
Using conservation of angular momentum
=
(3600) (0.2) = (7200)
= 0.1 rev/s