Answer:
The metal will melt but their will be no change in temperature.
Explanation:
The metal is at its melting temperature which means it is still in solid phase but have to cross the enthalpy of its condensation at this same temperature to convert into liquid phase.
<u>On supplying heat, the metal's temperature will not change as the heat will be required as enthalpy of condensation to melt the solid to liquid at the melting temperature.</u>
Answer:
Explanation:
Given
Radius of A is twice of B i.e.

Also Potential of both sphere is same


thus




(b)Ratio of 
Electric Field is given by 
thus
----1
----2
Divide 2 by 1


Answer:
Wt = 26.84 [N]
Explanation:
In order to solve this problem we must use the definition of work in physics. Which tells us that this is equal to the product of force by distance.
In this case, we must sum the works of the force applied by the box and the friction force that also acts on the box.
The friction force is defined as the product of the normal force by the coefficient of friction.
f = N*μ
where:
N = normal force = m*g [N] (units of Newtons)
m = mass = 72 [kg]
g = gravity acceleration = 9.81 [m/s²]
f = friction force [N]
μ = friction coefficient = 0.21
f = 72*9.81*0.21
f = 148.32 [N]
Now the total work:
Wt = WF - Wf
where:
Wt = total work [J] (units of Joules)
WF = work by the pushing force [J]
Wf = work done by the friction force [J]
Wt = (160*2.3) - (148.32*2.3)
Wt = 26.84 [N]
Note: The friction force exerts a negative work, because this force is acting in opposite direction to the movement, therefore the negative sign.
Answer:

Explanation:
Given:
- file size to be transmitted,

- transmission rate of data,

- propagation speed,

- distance of data transfer,

<u>Now the delay in data transfer from source to destination for each 10 Mb:</u>



<u>Now this time is taken for each 10 Mb of data transfer and we have 30 Mb to transfer:</u>
So,


