The answer is (A) hope it helps
It’s true, because it also depends on things like mass. Higher temperature but less mass< Lower temperature but more mass.
Answer:
L = - 1361.591 k Kgm/s
Explanation:
Given
mA = 55.2 Kg
vA = 3.45 m/s
rA = 6.00 m
mB = 62.4 Kg
vB = 4.23 m/s
rB = 3.00 m
mC = 72.1 Kg
vC = 4.75 m/s
rC = - 5.00 m
then we apply the equation
L = (mv x r)
⇒ LA = mA*vA x rA = 55.2 *(3.45 i)x(6 j) = (1142.64 k) Kgm/s
⇒ LB = mB*vB x rB = 62.4 *(4.23 j)x(3 i) = (- 791.856 k) Kgm/s
⇒ LC = mC*vC x rC = 72.1 *(- 4.75 j)x(- 5 i) = (- 1712.375 k) Kgm/s
Finally, the total counterclockwise angular momentum of the three joggers about the origin is
L = LA + LB + LC = (1142.64 - 791.856 -1712.375) k Kgm/s
L = - 1361.591 k Kgm/s
6. Since we are not sure if the person in the question is actively lifting the crate, we have to determine the downwards force of the crate due to gravity and compare it to the normal force.
F = ma
F = (15.3)(-9.8)
F = -150N
Since the downwards force of the crate is equivalent to the normal force, it means the person is applying no force in picking up the object. So to pick up a 150N object from scratch, you would have to exert more force than the weight of the object, so the answer is 294N.
7. Same idea as question 2.
First determine the weight of the object:
F = ma
F = (30)(-9.8)
F = -294N
The crate in question is not moving, so the magnitudes of the forces in the upwards and downwards direction has to equal to 0.
-294 + 150N + x = 0
x = 144N
So the person is exerting 144 N.
10. First find the force of block B to the right due to its acceleration:
F = ma
F = (24)(0.5)
F = 12N
So block B is moving 12N to the right relative to block A due to block A's movement to the left. However, block A is being applied a much greater force and is moving quicker to the left than block B is moving to the right of bock A. The force that is causing block B to experience the lower relative force to the right is because of the friction. To find the friction:
The sum of the forces in the leftward and rightward direction for block B must equal 12N.
75 - x = 12
x = 63N
So the force of friction of block A on block B is 63N to the left.
Answer:
1. The final velocity of the truck is 15 m/s
2. The distance travelled by the truck is 37.5 m
Explanation:
1. Determination of the final velocity
Initial velocity (u) = 0 m/s
Acceleration (a) = 3 m/s²
Time (t) = 5 s
Final velocity (v) =?
The final velocity of the truck can be obtained as follow:
v = u + at
v = 0 + (3 × 5)
v = 0 + 15
v = 15 m/s
Therefore, the final velocity of the truck is 15 m/s
2. Determination of the distance travelled
Initial velocity (u) = 0 m/s
Acceleration (a) = 3 m/s²
Time (t) = 5 s
Distance (s) =?
The distance travelled by the truck can be obtained as follow:
s = ut + ½at²
s = (0 × 5) + (½ × 3 × 5²)
s = 0 + (½ × 3 × 25)
s = 0 + 37.5
s = 37.5 m
Therefore, the distance travelled by the truck is 37.5 m