Answer:
The length of chain she is allowed is 1.169 ft
Explanation:
The given parameters are;
The linear density of the chain = 0.83 lb/ft
The weight limit of the chain she wants = 1.4 lb
The formula for linear density = Weight/length
Therefore, in order to keep the chain below 1.4 lb, we have;
Linear density = Weight/length
Therefore;
The maximum length she wants = Weight/(Linear density)
Which gives;
The maximum length she wants = 1.4 lb/(0.83 lb/ft) =1.169 ft
Therefore;
The length of chain she is allowed = 1.169 ft.
Answer:

Explanation:
<u>Charge of an Electron</u>
Since Robert Millikan determined the charge of a single electron is

Every possible charged particle must have a charge that is an exact multiple of that elemental charge. For example, if a particle has 5 electrons in excess, thus its charge is 
Let's test the possible charges listed in the question:
. We have just found it's a possible charge of a particle
. Since 3.2 is an exact multiple of 1.6, this is also a possible charge of the oil droplets
this is not a possible charge for an oil droplet since it's smaller than the charge of the electron, the smallest unit of charge
cannot be a possible charge for an oil droplet because they are not exact multiples of 1.6
Finally, the charge
is four times the charge of the electron, so it is a possible value for the charge of an oil droplet
Summarizing, the following are the possible values for the charge of an oil droplet:

Answer: Option (b) is the correct answer.
Explanation:
Since, there is a negative charge present on the ball and a positive charge present on the rod. So, when the negatively charged metal ball will come in contact with the rod then positive charges from rod get conducted towards the metal ball.
Hence, the rod gets neutralized. But towards the metal ball there is a continuous supply of negative charges. Therefore, after the neutralization of positive charge from the rod there will be flow of negative charges from the metal ball towards the rod.
Thus, we can conclude that negative charge spread evenly on both ends.
The acceleration of an object depends directly upon the net force acting upon the object, and inversely upon the mass of the object. As the force acting upon an object is increased, the acceleration of the object is increased. As the mass of an object is increased, the acceleration of the object is decreased.