Answer:
The reaction would shift toward the reactants
When the reaction reach equilibrium the partial pressure of NH3 will be greater than 1atm
Explanation:
For the reaction:
2NH₃(g) ⇄ N₂(g) + 3H₂(g)
Where K is defined as:
As initial pressures of all 3 gases is 1.0atm, reaction quotient, Q, is:
As Q > K, <em>the reaction will produce more NH₃ until Q = K consuming N₂ and H₂.</em>
Thus, there are true:
<h3>The reaction would shift toward the reactants</h3><h3>When the reaction reach equilibrium the partial pressure of NH3 will be greater than 1atm</h3>
<em />
Answer:
See explanation
Explanation:
Electrons transition between energy levels in an atom due to gain or loss of energy. An electron may gain energy and move from its ground state to one of the accessible excited states. The electron quickly returns to ground state, emitting the energy previously absorbed as a photon of light. The wavelength of light emitted is measured using powerful spectrometers.
Atoms can be excited thermally or by irradiation with light of appropriate frequency.
The Ti 2+ ions is represented by electron configuration (Ar)3d2. Titanium is in atomic number 22 and its electronic configuration is (Ar)3d2 4s2. Titanium loss two electron that is 4s2 electrons hence the electronic configuration ( Ar)3d2. 4s2 is the valence electron hence it the one which is lost to form Ti2+
Answer:
is the concentration of the compound in a solution.
Explanation:
Using Beer-Lambert's law :
Formula used :
Where:
A = absorbance of solution
C = concentration of solution
l = path length
= molar absorptivity coefficient
We have:
C = ? , l = 1.00 cm, A = 0.090
is the concentration of the compound in a solution.