Yes so x multiply by the hour but u add 59 for each hour to get the exath speed per minute
The sun’s huge mass gives it a strong gravitational pull. Because of this gravitational pull, planets that are closer to the sun tend to have different motion than planets that are further away from the sun, because the gravity becomes stronger the closer you get. I hope this helped!
Answer:
v₁ = 3.5 m/s
v₂ = 6.4 m/s
Explanation:
We have the following data:
m₁ = mass of trailing car = 400 kg
m₂ = mass of leading car = 400 kg
u₁ = initial speed of trailing car = 6.4 m/s
u₂ = initial speed of leading car = 3.5 m/s
v₁ = final speed of trailing car = ?
v₂ = final speed of leading car = ?
The final speed of the leading car is given by the following formula:

<u>v₂ = 6.4 m/s</u>
The final speed of the leading car is given by the following formula:

<u>v₁ = 3.5 m/s</u>
Answer:
X-Positions: Y-Positions
x(0) = 0 y(0) = 0
x(2) = 120 m y(2) = 19.6 m
x(4) = 240 m y(4) = 78.4 m
x(6) = 360 m y(6) = 176.4 m
x(8) = 480 m y(8) = 313 m
x(10) = 600m y (10) = 490 m
Explanation:
X-Positions
- First, we choose to take the horizontal direction as our x-axis, and the positive x-axis as positive.
- After being thrown, in the horizontal direction, no external influence acts on the stone, so it will continue in the same direction at the same initial speed of 60. 0 m/s
- So, in order to know the horizontal position at any time t, we can apply the definition of average velocity, rearranging terms, as follows:

- It can be seen that after 2 s, the displacement will be 120 m, and each 2 seconds, as the speed is constant, the displacement will increase in the same 120 m each time.
Y-Positions
- We choose to take the vertical direction as our y-axis, taking the downward direction as our positive axis.
- As both axes are perpendicular each other, both movements are independent each other also, so, in the vertical direction, the stone starts from rest.
- At any moment, it is subject to the acceleration of gravity, g.
- As the acceleration is constant, we can find the vertical displacement (taking the height of the cliff as the initial reference level), using the following kinematic equation:

- Replacing by the values of t, we get the following vertical positions, from the height of the cliff as y = 0:
- y(2) = 2* 9.8 m/s2 = 19.6 m
- y(4) = 8* 9.8 m/s2 = 78.4 m
- y(6) = 18*9.8 m/s2 = 176.4 m
- y(8) = 32*9.8 m/s2 = 313.6 m
- y(10)= 50 * 9.8 m/s2 = 490.0 m
Answer:
x=22.57 m
Explanation:
Given that
35 m in W of S
angle = 40 degrees
25 m in east
From the diagram
The angle

From the triangle OAB


x=22.57 m
Therefore the answer of the above problem will be 22.57 m