The Earth Science answers are shown below.
Explanation:
1. The movement of the sun will change the angle it has on the sky in 30 minutes, it is always moving from the east to the west, so in 30 minutes it would move more west, no matter at what time you make the experiment. From Earth, the Sun looks like it moves across the sky in the daytime and appears to disappear at night. This is because the Earth is spinning towards the east. The Earth spins about its axis, an imaginary line that runs through the middle of the Earth between the North and South poles
2. No, both marks are the same distance from the ground. the amount of stick above the mark will not affect the distance that the shadow of the mark moves at all.
The Sun's clockwise motion is an apparent motion caused by the rotation of the Earth. The counterclockwise rotation of the Earth in the Sun's light causes the shadow of the gnomon to move clockwise. As the Sun appears to move higher above the horizon before solar noon, the shadow grows shorter and shorter.
3. In the summer the shadows are shorter, and in the winter the shadows are longer. In the morning your shadow will point west and in the afternoon it will point east. If your shadow is long, it is near sunrise or sunset. Your shadow is shortest around noon.
4. If the sun rises in the east and sets in the west, then the Earth should rotate in the opposite direction from west to east (anti-clockwise). Earth's spin (or rotation) on its axis. Earth rotates or spins toward the east, and that's why the Sun, Moon, planets, and stars all rise in the east and make their way westward across the sky.
Explanation:
Joule (J) is the MKS unit of energy, equal to the force of one Newton acting through one meter.
For this case, let's
assume that the pot spends exactly half of its time going up, and half going
down, i.e. it is visible upward for 0.245 s and downward for 0.245 s. Let us take
the bottom of the window to be zero on a vertical axis pointing upward. All calculations
will be made in reference to this coordinate system. <span>
An initial condition has been supplied by the problem:
s=1.80m when t=0.245s
<span>This means that it takes the pot 0.245 seconds to travel
upward 1.8m. Knowing that the gravitational acceleration acts downward
constantly at 9.81m/s^2, and based on this information we can use the formula:
s=(v)(t)+(1/2)(a)(t^2)
to solve for v, the initial velocity of the pot as it enters
the cat's view through the window. Substituting and solving (note that
gravitational acceleration is negative since this is opposite our coordinate
orientation):
(1.8m)=(v)(0.245s)+(1/2)(-9.81m/s^2)(0.245s)^2
v=8.549m/s
<span>Now we know the initial velocity of the pot right when it
enters the view of the window. We know that at the apex of its flight, the
pot's velocity will be v=0, and using this piece of information we can use the
kinematic equation:
(v final)=(v initial)+(a)(t)
to solve for the time it will take for the pot to reach the
apex of its flight. Because (v final)=0, this equation will look like
0=(v)+(a)(t)
Substituting and solving for t:
0=(8.549m/s)+(-9.81m/s^2)(t)
t=0.8714s
<span>Using this information and the kinematic equation we can find
the total height of the pot’s flight:
s=(v)(t)+(1/2)(a)(t^2) </span></span></span></span>
s=8.549m/s (0.8714s)-0.5(9.81m/s^2)(0.8714s)^2
s=3.725m<span>
This distance is measured from the bottom of the window, and
so we will need to subtract 1.80m from it to find the distance from the top of
the window:
3.725m – 1.8m=1.925m</span>
Answer:
<span>1.925m</span>
The answer is Eficiency=T<< Tox100
2 minutes is 120 seconds, so if you were finding vibrations per minute, it would be 60 times a minute.