Answer:
The pressures will remain at the same value.
Explanation:
A catalyst is a substance that alter the rate of a chemical reaction. It either speeds up the or slows down the rate of a chemical reaction.
While a catalyst affects the rate, it is noteworthy that it has no effect on the equilibrium position of the chemical reaction. A catalyst works by creating an alternative pathway for the reaction to proceed. Most times, it decreases the activation energy needed to kickstart the chemical reaction.
Hence, we know that it has no effect on the equilibrium position. Factors affecting equilibrium position includes, temperature and concentration of reactants and products( pressure in terms of gases).
The reactants and the products here are gaseous, and as such pressure affects the equilibrium position. Now, we have established that the equilibrium position is unaffected. And as such the pressure affecting it does not change.
Thus, we have established that the pressure of the products and reactants are unaffected and as such they remain at their value unaffected.
Answer:
7.82 g of Cu
Explanation:
2 moles of Al react to 3 moles of copper sulfate in order to produce 3 moles of copper and 1 mol of aluminum sulfate.
Firstly we determine the moles of reactant.
As copper sulfate is in excess, Al is the limiting.
2.75 g . 1mol /26.98g = 0.102 moles
Ratio is 2:3. 2 moles of Al, can produce 3 moles of Cu
So the 0.102 moles of Al will produce(0.102 . 3) /2 = 0.153 moles.
We convert moles to mass: 0.153 mol . 63.5g /mol = 9.71 g
That's the theoretical yield (100 % yield reaction)
We know that: (yield produced / theoretical yield) . 100 = percent yield
We replace:
(Yield produced / 9.71g) . 100 = 80.5 %
(Yield produced / 9.71g) = 0.805
Yield produced = 0.805 . 9.71g = 7.82 g