Answer : The rate law for the overall reaction is, ![Rate=k[A][B]](https://tex.z-dn.net/?f=Rate%3Dk%5BA%5D%5BB%5D)
Explanation :
Rate law : It is defined as the expression which expresses the rate of the reaction in terms of molar concentration of the reactants with each term raised to the power their stoichiometric coefficient of that reactant in the balanced chemical equation.
As we are given the mechanism for the reaction :
Step 1 :
(slow)
Step 2 :
(fast)
Overall reaction : 
The rate law expression for overall reaction should be in terms of A and B.
As we know that the slow step is the rate determining step. So,
The slow step reaction is,

The expression of rate law for this reaction will be,
![Rate=k[A][B]](https://tex.z-dn.net/?f=Rate%3Dk%5BA%5D%5BB%5D)
Hence, the rate law for the overall reaction is ![Rate=k[A][B]](https://tex.z-dn.net/?f=Rate%3Dk%5BA%5D%5BB%5D)
Remembering the equation Q=MCdeltaT where
q=is the amount of heat energy
M=mass
C=specific heat
deltaT= change in temperature
Therefore, using the equation we can substitute values and solve for q.
Q= (15 grams) (0.129 J/(gx°C))(85-22)
Q=(15) ((0.129 J/(gx°C)) (63)
Q=121.9 Joules
The energy needed to raise the temperature of 15 grams of gold from 22 degrees Celsius to 85 degrees Celsius is then 121.9 Joules or 122 Joules (if rounded up).
The answer is Thermal Energy :)
Answer:
Explanation:
If we look at the structure of 1-Bromopropane; we will see that it is a derivative of alkane family by the the substitution of an alkyl group. The position of the Bromine in the propane is 1, making 1-Bromopropane a primary alkyl-halide.
Primary alkyl - halide undergo SN2 mechanism. This nucleophilic reaction needs to be a strong alkyl halide , such as 1-Bromopropane used otherwise it will result to a reactive mechanism if a weak electrophile is used.
However, the critical and the main objective here is to Draw the major substitution product if the reaction proceeds in good yield. If no reaction is expected or yields will be poor, draw the starting material in the box. If a charged product is formed, be sure to draw the counterion.
The attached diagrams portraying this notions is shown in the attached file below.
Answer:
Ionic
Explanation: Ionic compounds tend to be hard and brittle while covalent compounds tend to be softer and more flexible.
Hope this helped!