B) The elements become less reactive.
Answer:
The reaction will shift to the left to produce more reactants.
Explanation:
According to the Le- Chatelier principle,
At equilibrium state when stress is applied to the system, the system will behave in such a way to nullify the stress.
The equilibrium can be disturb,
By changing the concentration
By changing the volume
By changing the pressure
By changing the temperature
Consider the following chemical reaction.
Chemical reaction:
6CO₂ + 6H₂O ⇄ C₆H₁₂O₆ + 6O₂
In this reaction the equilibrium is disturb by increasing the concentration of Product.
When the concentration of product is increased the system will proceed in backward direction in order to regain the equilibrium. Because when product concentration is high it means reaction is not on equilibrium state. As the concentration of O₂ increased the reaction proceed in backward direction to regain the equilibrium state and more reactant is formed.
In dilute solutions, the unit osmolarity is being used. It usually has units milliosmols per liter of solution or mOsmol/L. An osmole defines the number of moles of the solute that would have an effect on the osmotic pressure of the solution. Osmolarity is calculated by the product of the molarity and the number of particles in the solution which is 2 for potassium chloride. We calculate as follows:
Osmolarity = molarity (# of particles)250 mosmol/L ( 1 osmol / 1000 osmol) = x moles / .100 L (2)
x moles = 0.0125 mol KCl
mass KCl = 0.0125 mol KCl ( 39 + 35.5 g/mol) = 0.93125 g KCl
Given what we know, we can confirm that option A is correct in that Stronger IMFs lead to stronger adhesion, producing rounder drops with a smaller diameter.
<h3>What are IMFs?</h3>
IMF is the acronym used to describe intermolecular forces. These forces include all of the forces that bind molecules together, of which water has plenty. This bonding force creates a high adhesion and thus gives water its surface tension which makes it stay together in the shape of a drop.
Therefore, we can confirm that stronger IMFs lead to stronger adhesion, producing rounder drops with a smaller diameter, and therefore that option A is correct.
To learn more about molecular forces visit:
brainly.com/question/25863653?referrer=searchResults
Answer:
1) Moles of CO 2 = Given mass / Molecular mass of CO 2 = 4.4 / 44 = 0.1 mole. 2) Molecules of CO2 in 0.1 moles of CO2 = 0.1 x 6.023 x 10 23 = 6.023 x 10 22 molecules 3) 44 gram (molecular wt of CO 2) contains 2 moles atom of oxygen therefore 4.4 gram of CO2 will contain = 2 /44 *4.4 = 0.2 moles atom of Oxygen.