Answer:
The molality of the solution is 0.3716 mol/kg
The number of moles of solute is 0.0157 mol
The molecular weight of the solute is 129.30 g/mol
The molar mass of the solute is 129.32 g/mol
Explanation:
m (molality of the solution) = ∆T/Kf = (43.17 - 40.32)/7.67 = 0.3716 mol/kg
Number of moles of solute = molality × mass of solvent in kilogram = 0.3716 × 0.04219 = 0.0157 mol
Molecular weight of solute = mass/number of moles = 2.03/0.0157 = 129.3 g/mol
When Kf = 7.66 °C.kg/mol
Molar mass = 2.03 ÷ (2.85/7.66 × 0.04219) = 129.32 g/mol
Answer:
<h2>The P wave will be the first wiggle that is bigger than the rest of the little ones (the microseisms). Because P waves are the fastest seismic waves, they will usually be the first ones that your seismograph records. The next set of seismic waves on your seismogram will be the S waves</h2>
The temperature is constant which makes it the independent variable
Answer:
Mass = 96 g
Explanation:
Given data:
Number of moles of C = 8 mol
Mass of C in gram = ?
Solution:
Formula:
Number of moles = mass/molar mass
Molar mass of C = 12 g/mol
8 mol = mass / 12 g/mol
Mass = 8 mol × 12 g/mol
Mass = 96 g
I'd say it is an element. It is not a compound, it doesn't do things on its own like us. It's an element like fire and water.