Correct Answer is 1 i.e. Gamma rays—2 and radio waves—3
Reason:
1) In a hypernova, star<span> as similar to </span>nuclear fusion<span> converts lighter elements into heavy elements. If fusion is not capable of generating enough pressure to counteract gravity, star immediately collapses to form a </span>black hole<span>. During this process, energy will be released, along the axis of rotation to form </span>gamma-ray burst. Such gamma-ray burst was first detected using <span>Fermi Gamma-ray Space Telescope. Thus, gamma-ray is capable of providing information of gravity fields.
2) Radiowaves are capable of inducing transitions that requires less energies. These transition includes nuclear excitation and electron excitation (in rotational energy level). Depending upon the value to Jmax, it is possible to determine the temperature and </span><span>heat released by astronomical objects</span><span>
</span>
Answer:
False
Explanation:
Changing the coefficients is one of the steps of balancing a chemical equation. Changing the subscript changes the compounds being used, while changing the coefficient changes the amount of each compound being used.