Answer:The process of science is iterative.
Science circles back on itself so that useful ideas are built upon and used to learn even more about the natural world. This often means that successive investigations of a topic lead back to the same question, but at deeper and deeper levels. Let's begin with the basic question of how biological inheritance works. In the mid-1800s, Gregor Mendel showed that inheritance is particulate — that information is passed along in discrete packets that cannot be diluted. In the early 1900s, Walter Sutton and Theodor Boveri (among others) helped show that those particles of inheritance, today known as genes, were located on chromosomes. Experiments by Frederick Griffith, Oswald Avery, and many others soon elaborated on this understanding by showing that it was the DNA in chromosomes which carries genetic information. And then in 1953, James Watson and Francis Crick, again aided by the work of many others, provided an even more detailed understanding of inheritance by outlining the molecular structure of DNA. Still later in the 1960s, Marshall Nirenberg, Heinrich Matthaei, and others built upon this work to unravel the molecular code that allows DNA to encode proteins. And it doesn't stop there. Biologists have continued to deepen and extend our understanding of genes, how they are controlled, how patterns of control themselves are inherited, and how they produce the physical traits that pass from generation to generation. The process of science is not predetermined.
Any point in the process leads to many possible next steps, and where that next step leads could be a surprise. For example, instead of leading to a conclusion about tectonic movement, testing an idea about plate tectonics could lead to an observation of an unexpected rock layer. And that rock layer could trigger an interest in marine extinctions, which could spark a question about the dinosaur extinction — which might take the investigator off in an entirely new direction. At first this process might seem overwhelming. Even within the scope of a single investigation, science may involve many different people engaged in all sorts of different activities in different orders and at different points in time — it is simply much more dynamic, flexible, unpredictable, and rich than many textbooks represent it as. But don't panic! The scientific process may be complex, but the details are less important than the big picture …
Answer:
4.22
Explanation:
pH stands for potential hydrogen. The letter “p” denotes potential and the letter “H” denotes hydrogen.
pH helps to find the acidity or alkalinity of an aqueous solution.
The number of hydrogen ions (protons) present in a solution is determined by the pH scale.
A pH greater than 7 makes the water more alkaline and a pH less than 7 makes the water more acidic.
![pH=-\log [H^+]=-\log [0.00006]=4.22](https://tex.z-dn.net/?f=pH%3D-%5Clog%20%5BH%5E%2B%5D%3D-%5Clog%20%5B0.00006%5D%3D4.22)
Answer:
2.3 * 10^-5
Explanation:
Recall that the solubility of a solute is the amount of solute that dissolves in 1 dm^3 or 1000cm^3 of solution.
Hence;
Amount of calcium oxalate = 154 * 10^-3/128.097 g/mol = 1.2 * 10^-3 mols
From the question;
1.2 * 10^-3 mols dissolves in 250 mL
x moles dissolves in 1000mL
x = 1.2 * 10^-3 mols * 1000/250
x= 4.8 * 10^-3 moldm^-3
CaC2O4(s) ------->Ca^2+(aq) + C2O4^2-(aq)
Hence Ksp = [Ca^2+] [C2O4^2-]
Where;
[Ca^2+] = [C2O4^2-] = 4.8 * 10^-3 moldm^-3
Ksp = (4.8 * 10^-3)^2
Ksp = 2.3 * 10^-5
<span>The water cycle has no starting point. But, we'll begin in the oceans, since that is where most of Earth's water exists</span>
Mass is the property of a physical body and the resistance to acceleration when a net force is applied on the body.
The atomic mass of sodium (Na) is = 22.98
The atomic mass of nitrate (N) is = 14.00
The atomic mass of oxygen (O) is = 15.99
The sodium nitrate (NaNO3) consists of the atomic masses of Na+N+(O)3 = 85 grams
Therefore, the mass of 6.5 mol of sodium nitrate is = 6.5 * 1 mol of NaNO3
= 6.5 * (85)
= 552.50 grams