Answer:
An object that is moving wants to stay moving in a straight line. It takes an outside force acting upon it to change its direction or cause an acceleration.
Explanation:
The answer is false. The speed of the astronaut cancels out the force of gravity, causing a 'stationary freefall'. While under these effects, it is not required for an astronaut to 'strengthen' his body.
Answer:
1. 20.54m/s
2. 1.52s
Explanation:
QUESTION 1:
The speed the stone impact the ground is the final speed/velocity, which can be calculated using the formula:
v² = u² + 2as
Where;
v = final velocity (m/s)
u = initial velocity (m/s)
a = acceleration due to gravity (m/s²)
s = distance (m)
From the provided information, u = 5.65m/s, v = ?, s = 19.9m, a = 9.8m/s²
v² = 5.65² + 2 (9.8 × 19.9)
v² = 31.9225 + 2 (195.02)
v² = 31.9225 + 390.04
v² = 421.9625
v = √421.9625
v = 20.5417
v = 20.54m/s
QUESTION 2:
Using v = u + at
Where v = final velocity (m/s) = 20.54m/s
t = time (s)
u = initial velocity (m/s) = 5.65m/s
a = acceleration due to gravity (m/s²)
v = u + at
20.54 = 5.65 + 9.8t
20.54 - 5.65 = 9.8t
14.89 = 9.8t
t = 14.89/9.8
t = 1.519
t = 1.52s
Answer:

Explanation:
Given,
Width of rectangular tank, b = 1 m
Length of the tank, l = 2 m
height of the tank, d = 1.5 m
Depth of gasoline on the tank, h = 1 m


The differential form with the acceleration


acceleration in z-direction = 0 m/s²
g = 9.8 m/s²
a_y is the horizontal acceleration of the gasoline.



Hence, Horizontal acceleration of the gasoline before gasoline would spill is equal to 4.9 m/s²