Answer:
23. 4375 m
Explanation:
There are two parts of the rocket's motion
1 ) accelerating (assume it goes upto h1 height )
using motion equations upwards

Lets find the velocity after 2.5 seconds (V1)
V = U +at
V1 = 0 +5*2.5 = 12.5 m/s
2) motion under gravity (assume it goes upto h2 height )
now there no acceleration from the rocket. it is now subjected to the gravity
using motion equations upwards (assuming g= 10m/s² downwards)
V²= U² +2as
0 = 12.5²+2*(-10)*h2
h2 = 7.8125 m
maximum height = h1 + h2
= 15.625 + 7.8125
= 23. 4375 m
Answer:
1:4
Explanation:
The formula for calculating kinetic energy is:

If the mass is multiplied by 4, then, the kinetic energy must be increased by 4 as well. Since they will be travelling at the same speed when they are at the same point, the relation between KA and KB must be 1:4 or 1/4. Hope this helps!
The word "static" would be known to be friction as air rushing against an airplane
On a similar problem wherein instead of 480 g, a 650 gram of bar is used:
Angular momentum L = Iω, where
<span>I = the moment of inertia about the axis of rotation, which for a long thin uniform rod rotating about its center as depicted in the diagram would be 1/12mℓ², where m is the mass of the rod and ℓ is its length. The mass of this particular rod is not given but the length of 2 meters is. The moment of inertia is therefore </span>
<span>I = 1/12m*2² = 1/3m kg*m² </span>
<span>The angular momentum ω = 2πf, where f is the frequency of rotation. If the angular momentum is to be in SI units, this frequency must be in revolutions per second. 120 rpm is 2 rev/s, so </span>
<span>ω = 2π * 2 rev/s = 4π s^(-1) </span>
<span>The angular momentum would therefore be </span>
<span>L = Iω </span>
<span>= 1/3m * 4π </span>
<span>= 4/3πm kg*m²/s, where m is the rod's mass in kg. </span>
<span>The direction of the angular momentum vector - pseudovector, actually - would be straight out of the diagram toward the viewer. </span>
<span>Edit: 650 g = 0.650 kg, so </span>
<span>L = 4/3π(0.650) kg*m²/s </span>
<span>≈ 2.72 kg*m²/s</span>