Resistance = voltage / current.
That's. 120v / 14A = 8.57 ohms.
By the way, voltage doesn't "run through" anything. Current does. That would be the 14 Amps.
Ohm's law states that the electrical current (I) flowing in an circuit is proportional to the voltage (V) and inversely proportional to the resistance (R). Therefore, if the voltage is increased, the current will increase provided the resistance of the circuit does not change.
Answer:
︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎
︎
︎ ︎ ︎︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎
︎
︎ ︎ ︎︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎
Explanation:
Hope it helps!
<span>Four waste materials from copper ore processing are: ore minerals, unwanted rock or gangue, uranium, and pyrite/sulfide minerals. Ore minerals are contained in rock and have potential to be economically extracted, gangue may contain silicate minerals for which there is no economic value, uranium is a frequently-occurring radionuclide found in ore bodies, and pyrite and sulfide minerals may be found in tailings piles during copper processing.</span>
We are given that the system “releases” heat of 2,500 J,
and that it “does work on the surroundings” by 7,655 J.
The highlighted words releases and does work on the surroundings
all refers to that it is the system itself which expends energy to do those
things. Therefore the action of releasing heat and doing work has both magnitudes
of negative value. Therefore:
heat released = - 2, 500 J
work done = - 7, 655 J
Which means that the total internal energy change of the
system is:
change in internal energy = heat released + work
<span>change in internal energy = - 2, 500 J + - 7, 655 J</span>
<span>change in internal energy = -10,155 J</span>