The hotter molecules become, the faster they move around. The colder they are, the more slow and lethargic they are
Answer:
4.5 s, 324 ft
Explanation:
The object is projected upward with an initial velocity of
The equation that describes its height at time t is
(1)
where t, the time, is measured in seconds.
In order to find the time it takes for the object to reach the maximum height, we must find an expression for its velocity at time t, which can be found by calculating the derivative of the position, s(t):
(2)
At the maximum heigth, the vertical velocity is zero:
v(t) = 0
Substituting into the equation above, we find the corresponding time at which the object reaches the maximum height:
And by substituting this value into eq.(1), we also find the maximum height:
The rotation of Earth is equivalent to one day which is comprised of 24 hours. To determine the number of miles in Earth's circumference, one simply have to multiply the given rate by the appropriate conversion factor and dimensional analysis. This is shown below.
C = (1038 mi/h)(24 h/1 day)
C = 24,912 miles
From the given choices, the nearest value would have to be 20,000 mile. The answer is the second choice.
Yeah, it's every state. Atoms need a certain quanta of energy to jump to each state of energy, and therefore change state depending on how much energy is absorbed and/or released. This applies to all states of matter.