Answer:
C
Explanation:
polar has unequal sharing of electrons that has the lone pairs which has the electronegativity difference. can be mixed with water.
Best* and are there answer choic
<span>Answer:
Nothing is balanced in your final equation: not H, not O, not Cr, not I and your charges aren't either.
Start with your 2 half reactions:
I- --> IO3-
Cr2O72- --> 2 Cr3+
Balance O by adding H2O:
I- + 3 H2O --> IO3-
Cr2O72- --> 2 Cr3+ + 7H2O
Balance H by adding H+:
I- + 3 H2O --> IO3- + 6 H+
Cr2O72- + 14 H+ --> 2 Cr3+ + 7H2O
Balance charge by adding e-:
I- + 3 H2O --> IO3- + 6 H+ + 6 e-
Cr2O72- + 14 H+ + 6 e- --> 2 Cr3+ + 7H2O
Since the numbers of electrons in your two half reactions are the same, just add them and simplify to give:
Cr2O72- + I- + 8 H+ --> IO3- + 2 Cr3+ + 4 H2O</span>
Answer:

Explanation:
Ag₂CO₃(s) ⇌2Ag⁺(aq) + CO₃²⁻(aq); Ksp = 8.10 × 10⁻¹²
2x 0.007 50 + x
![K_{sp} =\text{[Ag$^{+}$]$^{2}$[CO$_{3}^{2-}$]} = (2x)^{2}\times 0.00750 = 8.10 \times 10^{-12}\\0.0300x^{2} = 8.10 \times 10^{-12}\\x^{2} = 2.70 \times 10^{-10}\\x = \sqrt{2.70 \times 10^{-10}} = \mathbf{1.64\times 10^{5}} \textbf{ mol/L}\\\text{The maximum concentration of Ag$^{+}$ is $\large \boxed{\mathbf{1.64\times 10^{-5}}\textbf{ mol/L }}$}](https://tex.z-dn.net/?f=K_%7Bsp%7D%20%3D%5Ctext%7B%5BAg%24%5E%7B%2B%7D%24%5D%24%5E%7B2%7D%24%5BCO%24_%7B3%7D%5E%7B2-%7D%24%5D%7D%20%3D%20%282x%29%5E%7B2%7D%5Ctimes%200.00750%20%3D%208.10%20%5Ctimes%2010%5E%7B-12%7D%5C%5C0.0300x%5E%7B2%7D%20%3D%208.10%20%5Ctimes%2010%5E%7B-12%7D%5C%5Cx%5E%7B2%7D%20%3D%202.70%20%5Ctimes%2010%5E%7B-10%7D%5C%5Cx%20%3D%20%5Csqrt%7B2.70%20%5Ctimes%2010%5E%7B-10%7D%7D%20%3D%20%5Cmathbf%7B1.64%5Ctimes%2010%5E%7B5%7D%7D%20%5Ctextbf%7B%20mol%2FL%7D%5C%5C%5Ctext%7BThe%20maximum%20concentration%20of%20Ag%24%5E%7B%2B%7D%24%20is%20%24%5Clarge%20%5Cboxed%7B%5Cmathbf%7B1.64%5Ctimes%2010%5E%7B-5%7D%7D%5Ctextbf%7B%20mol%2FL%20%7D%7D%24%7D)
Answer:
0.17 moles
Explanation:
In the elements of the periodic table, the atomic mass = molar mass. <u>Ex:</u> Atomic mass of Carbon is 12.01 amu which means molar mass of Carbon is also 12.01g/mol.
In order to find the # of moles in a 12 g sample of NiC-12, we will need to multiply the number of each atom by its molar mass and then add the masses of both Nickel and C-12 found in the periodic table:
- Molar Mass of Ni (Nickel): 58.69 g/mol
- Molar Mass of C (Carbon): 12.01 g/mol
Since there's just one atom of both Carbon and Nickel, we just add up the masses to find the molar mass of the whole compound of NiC-12.
- 58.69 g/mol of Nickel + 12.01 g/mol of Carbon = 70.7 g/mol of NiC-12
There's 12g of NiC-12, which is less than the molar mass of NiC-12, so the number of moles should be less than 1. In order to find the # of moles in NiC-12, we need to do some dimensional analysis:
- 12g NiC-12 (1 mol of NiC-12/70.7g NiC-12) = 0.17 mol of NiC-12
- The grams cancel, leaving us with moles of NiC-12, so the answer is 0.17 moles of NiC-12 in a 12 g sample.
<em>P.S. C-12 or C12 just means that the Carbon atom has an atomic mass of 12amu and a molar mass of 12g/mol, or just regular carbon.</em>