Answer:
Possible lowest volume = 0.19 cm
Possible highest volume = 0.21 cm
Explanation:
given data
volumetric pipette uncertainty = 0.01 cm³
total volume = 0.20 cm³
solution
we will get here Possible lowest and highest volume that is express as
Possible lowest volume = total volume - uncertainty .....................1
Possible highest volume = total volume + uncertainty ....................2
put here value in both equation and we get
Possible lowest volume = 0.20 cm - 0.01 cm
Possible lowest volume = 0.19 cm
and
Possible highest volume = 0.20 cm + 0.01 cm
Possible highest volume = 0.21 cm
Answer:
Liquids in a form of mixture has less weight as compared to sum of all liquid's weight due to release of gases.
The combined weights of several liquids mixed in an open flask be less than the sum of all the weights of the liquids because when the reaction occurs new products are formed and also some gases which releases in the atmosphere.
These gases also contribute in the weight of the product so when it is released the weight of the mixture of liquids are less than the sum of the weights of all liquids so we can conclude that liquids in a form of mixture has less weight as compared to sum of all liquid's weight.
Explanation:
The balanced equation for the reaction is as follows
Na₂CO₃ + 2HCl --> 2NaCl + CO₂ + H₂O
stoichiometry of Na₂CO₃ to HCl is 1:2
number of Na₂CO₃ moles reacted = molarity x volume
number of Na₂CO₃ moles = 0.100 mol/L x 0.750 L = 0.0750 mol
according to molar ratio of 1:2
1 mol of Na₂CO₃ reacts with 2 mol of HCl
then 0.0750 mol of Na₂CO₃ mol reacts with - 2 x 0.0750 = 0.150 mol
molarity of given HCl solution is 1.00 mol/L
molarity is defined as the number of moles of solute in 1 L of solution
there are 1.00 mol in 1 L of solution
therefore there are 0.150 mol in - 0.150 mol / 1.00 mol/L = 0.150 L
volume of HCl required is 0.150 L
Answer:
The hydrogen molecules combine with the oxygen molecules, 2 hydrogen molecules, and 1 oxygen molecules is the amount needed to make one water atom or molecule, whatever you want to call it.