Answer:
x = 1474.9 [m]
Explanation:
To solve this problem we must use Newton's second law, which tells us that the sum of forces must be equal to the product of mass by acceleration.
We must understand that when forces are applied on the body, they tend to slow the body down to stop it.
So as the body continues to move to the left, it is slowing down. Therefore we must calculate this deceleration value using Newton's second law. We must perform a sum of forces on the x-axis equal to the product of mass by acceleration. With leftward movement as negative and rightward forces as positive.
ΣF = m*a
![10 +12*sin(60)= - 6*a\\a = - 3.39[m/s^{2}]](https://tex.z-dn.net/?f=10%20%2B12%2Asin%2860%29%3D%20-%206%2Aa%5C%5Ca%20%3D%20-%203.39%5Bm%2Fs%5E%7B2%7D%5D)
Now using the following equation of kinematics, we can calculate the distance of the block, before stopping completely. The initial speed must be 100 [m/s].

where:
Vf = final velocity = 0 (the block stops)
Vo = initial velocity = 100 [m/s]
a = - 3.39 [m/s²]
x = displacement [m]
![0 = 100^{2}-2*3.39*x\\x=\frac{10000}{2*3.39}\\x=1474.9[m]](https://tex.z-dn.net/?f=0%20%3D%20100%5E%7B2%7D-2%2A3.39%2Ax%5C%5Cx%3D%5Cfrac%7B10000%7D%7B2%2A3.39%7D%5C%5Cx%3D1474.9%5Bm%5D)
The formula for the period of the pendulum is

where L is the pendulum's length and g the gravitational acceleration.
Labeling with E the Earth and with M Mars, we can write the period of the pendulum on Earth as

and the period of the pendulum on Mars as

if we calculate the ratio, we get

but we know that the gravitational acceleration on Mars is 0.37 times the gravitational acceleration on Earth:

Substituting into the formula, we find

And so, the period of the pendulum on Mars is
Gravity
Hope this helps:)
The implication is that tilted sedimentary layers observed to day mist have been subjected to tectonic forces