The charge of a nucleus is positive because protons are found inside the nucleus while electrons are on shells outside of it. there are three terms because of the different locations of the electrons and what they do. ex. shielding electrons shield the valence electrons from the strong pull of the nucleus
The ideal gas law is: PV=nRT
Pressure
Volume
n= moles
R= gas constant
Temperature in Kelvin
(Degrees in celsius +273)
n= PV/RT
(1.00atm)(5.00L)/(.08026)(295K)= .207mol of gas
Answer:
75 mg
Explanation:
We can write the extraction formula as
x = m/[1 + (1/K)(Vaq/Vo)], where
x = mass extracted
m = total mass of solute
K = distribution coefficient
Vo = volume of organic layer
Vaq = volume of aqueous layer
Data:
m = 75 mg
K = 1.8
Vo = 0.90 mL
Vaq = 1.00 mL
Calculations:
For each extraction,
1 + (1/K)(Vaq/Vo) = 1 + (1/1.8)(1.00/0.90) = 1 + 0.62 = 1.62
x = m/1.62 = 0.618m
So, 61.8 % of the solute is extracted in each step.
In other words, 38.2 % of the solute remains.
Let r = the amount remaining after n extractions. Then
r = m(0.382)^n.
If n = 7,
r = 75(0.382)^7 = 75 × 0.001 18 = 0.088 mg
m = 75 - 0.088 = 75 mg
After seven extractions, 75 mg (99.999 %) of the solute will be extracted.
Answer: The atom count for each element on the reactant side of a balanced chemical equation is equal to the atom count for each element on the product side of the same equation
Explanation:
According to the law of conservation of mass, mass can neither be created nor be destroyed. Thus the mass of products formed must be equal to the mass of reactants taken.
In order to get the same mass on both sides, the atoms of each element must be balanced on both sides of the chemical equation.

Thus there are 4 atoms of hydrogen on reactant as well as product side.
Also there are 2 atoms of oxygen on reactant as well as product side.