Answer: 0.5N
Explanation:
Gravitational force is calculated using the formula :
F = Gm1m2/r^2
Where G is the gravitational constant (6.67 × 10^-11)
At a distance 'r' of 2metres apart:
Mass of objects are m1 and m2
Gravitational force 'F1' = 2N
Inputting values into the formula :
2 = Gm1m2 / 2^2 - - - - - (1)
At a distance 'r' of 4meters apart:
Mass of objects are m1 and m2
Gravitational force 'F2' = y
Inputting values
F2 = Gm1m2 / 4^2 - - - - - (2)
Dividing equations 1 and 2
2 = Gm1m2 / 2^2 ÷ F2 = Gm1m2 / 4^2
2 / F2 = (Gm1m2 / 4) / (Gm1m2 / 16)
2 / F2 = (Gm1m2 / 4) × (16 / Gm1m2)
2/F2 = 16 / 4
Cross multiply
2 × 4 = 16 × F2
8 = 16F2
F2 = 8/16
F2 = 0.5N
Answer:
4 m/s^2
Explanation:
The acceleration is defined as: Δv/Δt (the difference of the velocity over a time period in which happens that difference).
Remember that a difference is calculated by subtracting the initial value of a physical quantity from its final value.
In our case:
Δv = Vfinal - Vinitial = 36m/s - 0 m/s = 36m/s
Δt = 9s
a = Δv/Δt = 36m/s / 9s = 4m/s^2
Answer:
Joule
Explanation:
energy, work, quantity of heat
m2·kg·s-2
Answer:
All forms of energy are either kinetic or potential. The energy associated with motion is called kinetic energy . The energy associated with position is called potential energy . Potential energy is not "stored energy".
Explanation:
Well, there you have a very important principle wrapped up in that question.
There's actually no such thing as a real, actual amount of potential energy.
There's only potential <em><u>relative to some place</u></em>. It's the work you have to do
to lift the object from that reference place to wherever it is now. It's also
the kinetic energy the object would have if it fell down to the reference place
from where it is now.
Here's the formula for potential energy: PE = (mass) x (gravity) x (<em><u>height</u></em><u>)</u> .
So naturally, when you use that formula, you need to decide "height above what ?"
If you're reading a book while you're flying in a passenger jet, the book's PE is
(M x G x 0 meters) relative to your lap, (M x G x 1 meter) relative to the floor of the
plane, (M x G x 10,000 meters) relative to the ground, and maybe (M x G x 25,000 meters)
relative to the bottom of the ocean.
Let's say that gravity is 9.8 m/s² .
Then a 4kg block sitting on the floor has (39.2 x 0 meters) PE relative to the floor
it's sitting on, also (39.2 x 3 meters) relative to the floor that's one floor downstairs,
also (39.2 x 30 meters) relative to 10 floors downstairs, and if it's on the top floor of
the Amoco/Aon Center in Chicago, maybe (39.2 x 345 meters) relative to the floor
in the coffee shop that's off the lobby on the ground floor.